Math 539 Homework 1
January 30, 2004

I recorrected Q 2, which can be proved in its original form if you use (i).

Problem 1. (i) Show that if X is a Hausdorff topological space then every compact subset of X is closed.

(ii) Show that if X is locally compact and Hausdorff (i.e. X is the union of open subsets with compact closures) then for every open U and point $x \in U$ there is an open set V with compact closure such that $x \in V \subset \overline{V} \subset U$.

Problem 2. (i) Suppose that X is Hausdorff, let $K \subset X$ be compact and suppose that $K \subset U_1 \cup \cdots \cup U_n$ where the U_i are open. Show that K is the union of a finite number of compact sets K_j, $j = 1, \ldots, M$, such that each K_j is contained in some U_i.

(ii) Consider the iterated mapping space $M(X, M(Y, Z))$ where X is Hausdorff and Y is locally compact and Hausdorff. Let $K \subset X$ be compact, $L_1, L_2 \subset Y$ be compact and $U_1, U_2 \subset Z$ be open. Denote by U^L the set of maps $f : Y \to Z$ such that $f(L) \subset U$. Show that
\[
\left(U_1^{L_1} \cup U_2^{L_2} \right)^K
\]
is a finite intersection of sets of the form $(U^L)^K$. Hence deduce that the sets $(U^L)^K$ (with U open and K, L compact) form a subbasis for the compact–open topology in $M(X, M(Y, Z))$.
(We assume that $M(Y, Z)$ is also given the compact-open topology.)

(iii) Show that the sets $U^{K \times L}$ form a subbasis for the topology on $M(X \times Y, Z)$ where U (resp. K, L) ranges over all open (resp. compact) subsets of Z (resp. X, Y).

(iv) Deduce that the map $\phi : M(X \times Y, Z) \to M(X, M(Y, Z))$ is a homeomorphism, where for each $g \in M(X \times Y, Z)$
\[
\phi(g)(x) : y \mapsto g(x, y).
\]

Problem 3 (i) If A is a subspace of X and B is a subspace of Y we denote by $M(X, A; Y, B)$ the subset of $M(X, Y)$ consisting of maps $f : X \to Y$ such that $f(A) \subset B$. We give it the subspace topology. Suppose that B is a single point \ast in Y. Then there is an obvious bijection
\[
\phi : M(X, A; Y, \ast) \to M(X/A, \ast; Y, \ast)
\]
where X/A denotes the quotient space with base point \ast equal to the image of A in X/A. Show that if A is compact this is a homeomorphism.

(ii) Let X be the unit ball B in \mathbb{R}^n and A be its boundary $\partial B = S^{n-1}$. Show that the quotient space X/A is homeomorphic to the sphere S^n (where you define S^n as the unit sphere in \mathbb{R}^{n+1}).