Problem 1. (a) Is the function \(f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \) with formula \(f(x) = 1/x \) bounded?
(b) Is \(f \) bounded when restricted to the domain \(D := [1, \infty) \)?
(c) Find the supremum and infimum of \(f(D) \) or explain why they do not exist.

Problem 2. State the Archimedean property for rational numbers and prove that it holds.
Note: Do not use the Completeness Property of the real numbers, i.e. do not imitate the proof of 2.4.3. There is a different short argument that applies when \(x \) is rational.

Problem 3. Let \(S \subset \mathbb{R} \) be nonempty. Show that \(u \in \mathbb{R} \) is an upper bound for \(S \) if and only if the conditions \(t \in \mathbb{R} \) and \(t > u \) imply that \(t \notin S \).

Problem 4. (a) Use induction to prove that a nonempty finite subset of \(\mathbb{R} \) contains its supremum.
Hint: Argue by induction on the number of elements in the finite set.
(b) Give an example to show that this statement does not hold for every infinite subset of \(\mathbb{R} \).

Problem 5. Prove Theorem 2.5.1 case (iii).