This problem set concerns the following concepts.

Let A be a subset of \mathbb{R}. A point $c \in \mathbb{R}$ is called a boundary point of A if every ϵ-neighborhood of c contains a point of A and a point of its complement $\mathbb{R} \setminus A$. (Note that c does NOT have to be in A.)

A point $c \in A$ is called an interior point of A if there is $\epsilon > 0$ such that the ϵ-neighborhood of x is entirely contained in A.

The subset A of \mathbb{R} is said to be open if for every $x \in A$ there is $\epsilon > 0$ such that the ϵ-neighborhood of x is entirely contained in A.

The subset B of \mathbb{R} is said to be closed iff its complement $\mathbb{R} \setminus B$ is open.

Problem 1. Let $A = [1, 3)$ (a half open interval).

(i) Show that the points 1 and 3 are boundary points of A.

(ii) Show that every point $x \in (1, 3)$ is an interior point of A.

(iii) Which of the following sets are closed?

$A = [2, 3)$, $B = \{0, 1/n : n \geq 1\}$, $C = (2, 4)$.

Problem 2. Let B be any subset of \mathbb{R}. Show that each point $x \in B$ is either a boundary point of B or an interior point of B, but cannot be both.

Problem 3. Let B be any subset of \mathbb{R}.

(i) Show that if $c \in B$ is a boundary point of B then it is a cluster point for the complement $\mathbb{R} \setminus B$ of B.

(ii) Prove that if c is a cluster point both for B and for its complement $\mathbb{R} \setminus B$ then c is a boundary point of B.

(iii) Take $B = \{1, 2\}$, a set containing just 2 points. What are its boundary points? What are its cluster points?

NOTE: The first version of Question 3(i) was wrong: it is not true that a boundary point c of B has to be a cluster point of B. The trouble is that c might be an isolated point of B, ie. there might be $\epsilon > 0$ such that $(c - \epsilon, c + \epsilon) \cap B = \{c\}$. Then c would be a boundary point but not a cluster point.

Problem 4. Let $A \subset \mathbb{R}$ be open.

(i) Show that every point of A is an interior point of A.

(ii) Use the result of Problem 2 to show that A contains NONE of its boundary points.

The next two parts are **bonus problems.**

(iii) Problem 4(ii) implies that all the boundary points of A lie in its complement $B := \mathbb{R} \setminus A$. Use this together with the definition of a closed set to show that a set is closed iff it contains all its boundary points.

(iv) Finally combine what you have just proved (Problem 4(iii)) with Problem 3(ii) to deduce that a set is closed iff it contains all its cluster points.