Problem 1. Fill in the blanks in the following proof that
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]

If \(x \in A \cup (B \cap C) \) then either \(x \in A \) or \(x \in B \cap C \). If \(x \in A \) then \(x \in A \cup B \) and \(x \in A \cup C \) and so \(x \in (A \cup B) \cap (A \cup C) \). On the other hand, if \(x \in B \cap C \) then \(x \in B \) and \(x \in C \). Hence \(A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C) \).

Now suppose that \(x \in (A \cup B) \cap (A \cup C) \). Then \(x \in A \cup B \) and \(x \in A \cup C \).

If \(x \in A \) then: \(x \in A \cup (B \cap C) \).

On the other hand if \(x \notin A \) then \(x \in B \) (because \(x \in A \cup B \)) and \(x \in C \) (because \(x \in A \cup C \)).

Therefore \(x \) is either in \(A \) or in \(B \cap C \), i.e. \(x \in A \cup (B \cap C) \).

Problem 2. It is possible to take intersections and unions of many sets \(A_i, i \in I \), not just two. We define

\[\bigcup_{i \in I} A_i := \{ x : \exists i \in I \text{ such that } x \in A_i \}, \quad \bigcap_{i \in I} A_i := \{ x : x \in A_i \forall i \in I \}. \]

The set \(I \) is called the indexing set. Often it is the set of the first \(n \) integers \(\{1, \ldots, n\} \), but sometimes it is the infinite set \(\mathbb{N} \) of all positive integers.

(i) Find three subsets \(A_1, A_2, A_3 \) of the plane \(\mathbb{R}^2 \) such that each double intersection \(A_i \cap A_j \) is nonempty but the triple intersection \(A_1 \cap A_2 \cap A_3 \) is empty.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Here I wrote \(A_{12} \) to mean \(A_1 \cap A_2 \), etc.}
\end{figure}

(ii) Find open intervals \(A_i = (a_i, b_i) \subset \mathbb{R} \) such that each finite intersection \(\cap_{1 \leq i \leq n} A_i \) is nonempty but the infinite intersection \(\cap_{i \in \mathbb{N}} A_i \) is empty.

Take for example, \(A_i = (0, 1/i) \).
Problem 3. Let $f : A \rightarrow B$ be a function and $C \subset A, D \subset B$. Show that $C \subseteq f^{-1}(f(C))$ and $f(f^{-1}D) \subseteq D$.

$f^{-1}(f(C)) = \{a \in A : f(a) \in f(C)\}$. If $x \in C$ then $f(x) \in f(C)$ by defn of $f(C)$, hence x satisfies the condition to be in $f^{-1}(f(C))$.

(In words: $f^{-1}(f(C))$ is the set of all points whose image is contained in the image $f(C)$ of C. But obviously the points in C have image in $f(V)$.)

If $x \in f^{-1}(D)$ then $f(x) \in D$ by defn of the inverse image. Hence $f(f^{-1}D) \subseteq D$.

If f is injective, do either of these inclusions become equalities?

f is injective iff $f(x) = f(y)$ implies $x = y$. To say $f(x) \in f(C)$, means that there is $c \in C$ such that $f(x) = f(c)$ (by defn of the set $f(C)$.) Hence if f is injective x must equal c. Since this holds for all x such that $f(x) \in f(C)$, $f^{-1}(f(C)) = C$.

But the second statement about D won’t hold unless the image of f contains D, and you can only be sure of this when f is surjective.

(eg take $f : [0, \infty) \rightarrow \mathbb{R}, x \mapsto x$ and $D = (-2, -1)$.)

What if f is surjective? Now the first statement need not hold, but the second will. You should find examples here on your own.

Problem 4. Let A, B be subsets of a universal set U. Simplify the following expressions. You can draw Venn diagrams to help you. (i) $(A \cap B) \cup (U \setminus A)$ and (ii) $A \cup [B \cap (U \setminus A)]$.

(i) $(A \cap B) \cup (U \setminus A) = B \cup (U \setminus A)$.

Proof: Since $A \cap B \subset B$, $(A \cap B) \cup (U \setminus A) = B \cup (U \setminus A)$.

Now suppose $x \in B \cup (U \setminus A)$. If $x \in U \setminus A$ then $x \in (A \cap B) \cup (U \setminus A)$, as required. So we need to consider the case when $x \notin U \setminus A$. This means that $x \in A$. Since $x \in B \cup (U \setminus A)$, in this case x must be in B. Hence $x \in A \cap B$. So x does lie in $(A \cap B) \cup (U \setminus A)$.

(ii) $A \cup [B \cap (U \setminus A)] = A \cup B$. Here again it is obvious that LHS \subseteq RHS (where LHS = left hand side means the set $A \cup [B \cap (U \setminus A)]$ and RHS = right hand side means $A \cup B$. To show RHS \subseteq LHS we only need to consider the case $x \notin A$ (since if $x \in A$ it is obvious.) But if $x \notin A$ and $x \in B$ then $x \in U \setminus A$ and $x \in B$, i.e. $x \in B \cap (U \setminus A) \subseteq$ LHS.