Math 319/320 Homework 3
Due Thursday, September 22, 2005
revised version

Problem 1. Show that
\[\left(\frac{1}{2}(a+b) \right)^2 \leq \frac{1}{2}(a^2 + b^2) \]
for all \(a, b \in \mathbb{R} \). Show that equality holds if and only if \(a = b \).

We must show that \(\frac{1}{4}(a^2 + 2ab + b^2) \leq \frac{1}{2}(a^2 + b^2) \). Multiplying both sides by 4, we see this is equivalent to \(a^2 + 2ab + b^2 \leq 2a^2 + 2b^2 \) and hence to \(0 \leq a^2 + b^2 - 2ab \). But this last inequality holds since \(a^2 + b^2 - 2ab = (a-b)^2 \) and \(x^2 \geq 0 \) for all \(x \). (We proved last on the last HW.) This shows that the inequality holds. Also it shows that we have equality if and only if \(0 = a^2 + b^2 - 2ab \), i.e. \((a-b)^2 = 0 \). But this holds iff \(a = b \). (Again this was proved in last HW.)

Problem 2. Assume that \(a < x < b \) and \(a < y < b \). Show that \(|x-y| \leq b-a \). Find a geometric explanation for the obtained inequality.

First proof If \(x = y \) the inequality is obvious since \(b-a > 0 \) by hypothesis. Now assume that \(x < y \). We know that \(x < b \). Also \(a < y \) implies \(-y < -a\). Adding we get
\[|x-y| = x - y = x + (-y) < b + (-a) = b-a. \]
Similarly, if \(y < x \) we may reverse the roles of \(x \) and \(y \) to find: \(|x-y| = y-x < b-a \). Hence in all cases \(|x-y| \leq b-a \). (in fact we have < here.)

Second proof (which I learnt as I was correcting your HW; it’s essentially the same but slicker.)
By hypothesis \(a < x < b \) and \(a < y < b \). Multiply the second inequality by \(-1\) to get \(-b < -y < -a\). Then add this to the first inequality to get \(a-b < x-y < b-a \). This has the form \(-C < Z < C\) where \(Z = x-y \) and \(C = b-a > 0 \). Hence it is equivalent to \(|Z| < C\), i.e. \(|x-y| < b-a \).

\(|x-y|\) is the distance between \(x \) and \(y \). So geometrically we are saying that the distance between any two points in the interval \((a,b)\) is at most \(b-a \).

Problem 3. Let \(a, b \in \mathbb{R} \) and \(a \neq b \). Show that there exist \(\epsilon \)-neighborhood \(U_{\epsilon}(a) \) of \(a \) and \(\epsilon \)-neighborhood \(V_{\epsilon}(b) \) of \(b \) such that \(U_{\epsilon}(a) \cap V_{\epsilon}(b) \neq \emptyset \).

The problem here is to show you can choose \(\epsilon \) large enough that these sets do intersect. So you must specify \(\epsilon \).

Proof 1 By renaming \(a, b \) we may suppose that \(a < b \). Choose \(\epsilon = 2(b-a) \), twice the distance between \(a \) and \(b \). Then \(b \in U_{\epsilon}(a) = (a-\epsilon, a+\epsilon) \). This is geometrically
obvious, since \(U_\epsilon(a) \) contains all points whose distance from \(a \) is \(< \epsilon \) and \(b \) has distance \(b - a < 2(b - a) = \epsilon \) from \(a \). Since \(b \in U_\epsilon(b) \) for any \(\epsilon \), \(b \) is in the intersection.

But to show it in formulas, note that

\[
U_\epsilon(a) = (a - 2b + 2a, a + 2b - 2a) = (3a - 2b, 2b - a).
\]

We need to see that \(3a - 2b < b < 2b - a \). But \(3a < 3b \) implies \(3a - 2b < b \); while \(b < 2b - a = b + (b - a) \) since \(b - a > 0 \).

As some of you noticed, any \(\epsilon > |b - a|/2 \) will do, since then the average \((a + b)/2 \) will lie in the intersection. Here is a nice argument to show this:

Proof 2: As above, we may suppose that \(a < b \). Note that \(V_\epsilon(a) = (a - \epsilon, a + \epsilon) \) and \(V_\epsilon(b) = (b - \epsilon, b + \epsilon) \). Since \(a < b, a - \epsilon < b \), and the only way to have an overlap of these intervals is for \(a + \epsilon > b - \epsilon \). (You draw this.) i.e. we need \(2\epsilon > b - a \) or \(\epsilon > (b - a)/2 \). If \(\epsilon \) satisfies this inequality then the average \((a + b)/2 \) is in both intervals.

Problem 4. Let \(S := \{x \in \mathbb{R} : x \geq 0\} \). Show that \(S \) has lower bounds, but no upper bounds. Show that \(\inf S = 0 \).

Clearly 0 is a lower bound for \(S \). Moreover if \(y > 0 \) then \(y \) is not a lower bound for \(S \) since \(y \) is not \(\geq \) the element \(0 \in S \). Hence every lower bound for \(S \) is \(\leq 0 \). Hence 0 is the greatest lower bound, i.e. \(0 = \inf S \).

To show \(S \) has no upper bounds: **Proof 1**

Since every \(n \in \mathbb{N} \) is positive and so \(> 0 \), then \(\mathbb{N} \subset S \). If \(y \) were an upper bound for \(S \), we would have \(y \geq n \) for all \(n \in \mathbb{N} \), in contradiction to Archimedes' Principle. Hence \(S \) has no upper bounds.

Proof 2: Suppose that \(u \) is an upper bound for \(S \). Then \(u \in \mathbb{R} \) and \(u \geq 0 \), since \(0 \in S \). Also \(u + 1 > u \) (this is true for all real numbers.) Hence \(u + 1 \in \mathbb{R} \) and \(u + 1 > u \geq 0 \). Hence \(u + 1 \in S \). Hence \(u \geq u + 1 \). But this is impossible, by the trichotomy rule. (we cannot have both \(u + 1 > u \) and \(u \geq u + 1 \).) Hence there is no upper bound.

Some of you combined the two arguments above, but it is simpler (and hence better) to use one OR the other.

Problem 5. If \(S \subset \mathbb{R} \) contains one of its upper bounds, then this upper bound is the supremum of \(S \).

Let \(y \) be an upper bound for \(S \) and suppose that \(y \in S \). We must show that no \(z < y \) is an upper bound for \(S \). But if \(z \) is an upper bound for \(S \), then \(z \geq y \) since \(y \in S \) and \(z \) is \(\geq \) every element in \(S \). Therefore \(z \) cannot also be \(< y \). Hence \(y \) is the least upper bound for \(S \), i.e. it is the supremum of \(S \).

Note: this argument is almost the same as the proof in ex. 4 that \(0 = \inf S \).