Problem 1. Prove the identity: \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \).

1. To show \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \):
 - Let \(x \in A \cup (B \cap C) \). Then \(x \in A \) or \(x \in B \cap C \). If \(x \in A \) then \(x \in A \cup B \) and \(A \cup C \), hence \(x \in (A \cup B) \cap (A \cup C) \). On the other hand, if \(x \in B \cap C \) then \(x \) is in both \(B \) and \(C \) and hence in both \((A \cup B) \) and \((A \cup C) \). Therefore, \(x \in (A \cup B) \cap (A \cup C) \).

2. To show \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C) \):
 - Let \(x \in (A \cup B) \cap (A \cup C) \). Then \(x \) is in \(A \cup B \) and in \(A \cup C \). In particular, \(x \) is in either \(A \) or \(B \). If \(x \in A \) then \(x \in A \cup (B \cap C) \), as required. If \(x \notin A \) then \(x \in B \). Since \(x \in A \cup C \) we must also have \(x \in C \). Hence \(x \in B \cap C \). Hence again \(x \in A \cup (B \cap C) \).

Problem 2. Consider the function \(f : \mathbb{R} \setminus \{1\} \to \mathbb{R} \) given by \(f(x) = \frac{x^2}{x - 1} \).

(i) Graph it.

(ii) Find \(f(A) \) where \(A \) is the interval \((1.5, 4)\).

\(f \) has a local minimum at 2, and \(f(2) = 4 \). So answer is \([4, 16/3]\).

(iii) Find \(f^{-1}(B) \) where \(B = [1, 4] \). This is the single point 2.

(iv) Find two subsets \(C, D \) of \(\mathbb{R} \setminus \{1\} \) such that \(f(C) \cap f(D) \neq f(C \cap D) \). You could take \(C, D \) to be any two different points with the same image. For ex., \(f(3) = 9/2 \). There is a point \(a \in (1, 2) \) that also satisfies the equation \(a^2/(a - 1) = 9/2 \). So take \(C = \{a\}, D = \{3\} \).
Problem 3. Let \(f : A \to B \) be a function and suppose that \(C \subseteq A \) and \(D \subseteq B \). Are the following statements true or false (for every choice of \(f, C, D \))? Justify your answers by a brief proof or a counterexample.

General comments: As we saw in class the inverse image seems to behave better in matters of this sort. So you should be suspicious of (i) – it is more likely that (ii) holds.

(i) \(f(A \setminus C) \subseteq f(A) \setminus f(C) \).
This is FALSE (since \(f \) need not be injective). eg take \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x^2 \). Let \(A = \{-2\}, C = \{2\} \). Then \(A \setminus C = \{-2\} \) and so \(f(A \setminus C) = \{4\} \). But \(f(A) = f(C) \) so \(f(A) \setminus f(C) = \emptyset \).

(ii) \(f^{-1}(B \setminus D) = f^{-1}(B) \setminus f^{-1}(D) \).
This is TRUE. \(x \in f^{-1}(B \setminus D) \) iff \(f(x) \in B \setminus D \) iff \(f(x) \in B \) and \(f(x) \notin D \) iff \(x \in f^{-1}(B) \) and \(x \notin f^{-1}(D) \), that is \(x \in f^{-1}(B) \setminus f^{-1}(D) \).

NOTE: here iff = if and only if (a useful shorthand)

Problem 4. Suppose that \(f : A \to B \) and \(g : B \to C \) are functions such that the composite \(g \circ f \) is surjective. Is \(g \) necessarily surjective? What about \(f \)? Give brief proofs or counterexamples.

\(g \) must be surjective. Proof: since \(g \circ f \) is surjective, for every \(c \in C \) there is \(a \in A \) such that \(g \circ f(a) = c \). But \(g \circ f(a) = g(f(a)) \). Hence there is an element \(b \in B \) such that \(g(b) = c \), namely \(b = f(a) \).

But \(f \) need not be surjective because \(g \) need not be injective. eg if \(f : [0, \infty) \to \mathbb{R} \) is \(f(x) = x \), \(f \) is not surjective. Define \(g : \mathbb{R} \to [0, \infty) \) by \(g(y) = y^2 \). Then \(g \circ f : [0, \infty) \to [0, \infty) \) is surjective.

Problem 5. Prove by mathematical induction: \(3^{2n} - 1 \) is divisible by 8 for all \(n \geq 1 \).

The statement \(P(n) \) is: \(8 \) divides the integer \(3^{2n} - 1 \).

Base case: if \(n = 1 \) then \(P(1) \) says that \(8 \) divides \(3^2 - 1 = 8 \), which is true.

Inductive step: suppose that \(8 \) divides \(3^{2k} - 1 \). We must show that \(8 \) divides \(3^{2k+2} - 1 \). But \(3^{2k+2} - 1 = 3^2 \times 3^{2k} - 1 = 9(3^{2k} - 1) + 9 - 1 = 9(3^{2k} - 1) + 8 \). Since \(8 \) divides \(3^{2k} - 1 \) by the inductive hypothesis, it divides \(9(3^{2k} - 1) \). It also divides \(8 \). Hence it divides \(9(3^{2k} - 1) + 8 = 3^{2k+2} - 1 \), as required.