Answer all the following questions, justifying all your statements. Each question is worth 15 points. There are six questions. Good luck!

1: Prove ONE of the following results:

EITHER: Let c be a cluster point of the set \{ $x_n : n \geq 1$ \}. Show that there is a subsequence of (x_n) that converges to c.

OR: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous and suppose that x_n are points in \mathbb{R} such that $f(x_n) = n$. Prove that the sequence (x_n) is unbounded.
2: Prove from the definition of limit and the results on the sheet that \(\lim_{n \to \infty} \frac{1}{2^n} = 0. \)

3: Consider the function \(f : [0, 2] \to \mathbb{R} \) given by \(f(x) = \frac{2}{1+x} \). Prove from the definition that \(\lim_{x \to 1} f(x) = 1. \)
4: Describe examples satisfying the following conditions. Justify your answers.

(i) an infinite subset of \mathbb{R} that has no cluster points.

(ii) a bounded sequence of real numbers that does not converge.

(iii) a function $f : [-1, 1] \to \mathbb{R}$ that is not continuous at $x = 0$.

5: Let (x_n) be a monotonic decreasing sequence and set $B = \{x_n : n \geq 1\}$. Show that the point x_5 is not a cluster point of B.
6: Which of the following sequences are monotonic? Which are convergent?

(i) \(x_n = \frac{n + 1}{2n - 1} \);
(ii) \(x_n = (-1)^n \frac{n + 1}{2n - 1} \);
(iii) \(x_n = \frac{n^2 + 1}{2n - 1} \).
Def 3.1.3 A sequence $X = (x_n)$ in \mathbb{R} is said to converge to $x \in \mathbb{R}$ if for every $\epsilon > 0$ there is $K(\epsilon) \in \mathbb{N}$ such that for all $n \geq K(\epsilon)$ the terms x_n satisfy $|x_n - x| < \epsilon$. A sequence that does not converge is called divergent.

Def 3.4.1 Let $X = (x_n)$ be a sequence and $n_1 < n_2 < \cdots < n_k < \ldots$ be a strictly increasing sequence of positive integers. Then the sequence $X' := (x_{n_k})$ given by $(x_{n_1}, x_{n_2}, \ldots)$ is called a subsequence of X.

Def 4.1.1. Let $A \subset \mathbb{R}$. A point $c \in \mathbb{R}$ is called a cluster point of A if for every $\delta > 0$ there is at least one point $x \in A$, $x \neq c$ such that $|x - c| < \delta$.

Let A be a subset of \mathbb{R}. A point $c \in \mathbb{R}$ is called a boundary point of A if every ϵ-neighborhood of c contains a point of A and a point of its complement $\mathbb{R} \setminus A$. (c does NOT have to be in A.) A point $c \in A$ is called an interior point of A if there is $\epsilon > 0$ such that the ϵ-neighborhood of x is entirely contained in A.

The subset A of \mathbb{R} is said to be open if for every $x \in A$ there is $\epsilon > 0$ such that the ϵ-neighborhood of x is entirely contained in A. The subset B of \mathbb{R} is said to be closed iff its complement $\mathbb{R} \setminus B$ is open.

Def 4.1.4. Let $A \subset \mathbb{R}$ and let c be a cluster point of A. A function $f : A \to \mathbb{R}$ is said to have limit L at c if for all $\epsilon > 0$ there is $\delta > 0$ such that $0 < |x - c| < \delta$, $x \in A \implies |f(x) - L| < \epsilon$.

Def 5.1.1. Let $A \subset \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in A$. Then f is continuous at c if for every $\epsilon > 0$ there is $\delta > 0$ such that $|x - c| < \delta$, $x \in A \implies |f(x) - f(c)| < \epsilon$. If B is a subset of A we say that f is continuous on B if it is continuous at all points $b \in B$.

Archimedes Principle: For all $x \in \mathbb{R}$ there is an integer $n > x$.

Bernoulli inequality: For all $x \geq 0$ and $n \geq 1 (1 + x)^n \geq 1 + nx$.

Thm 3.1.10 Comparison theorem for limits. Let (x_n) be a sequence in \mathbb{R} and let $x \in \mathbb{R}$. If (a_n) is a sequence of positive numbers with $\lim a_n = 0$ and if for some $C > 0$ and some $m \in \mathbb{N}$ we have $|x_n - x| \leq Ca_n$ for all $n \geq m$, then $\lim x_n = x$.

Thm 3.2.2 A convergent sequence of real numbers is bounded.

Thm 3.3.2 Monotone Convergence Theorem. A monotone sequence of real numbers is convergent if and only if it is bounded.

Thm 3.4.2 If $X = (x_n)$ converges to $x \in \mathbb{R}$, every subsequence X' of X converges to x.

3.4.7: Monotone subsequence theorem. Every sequence has a monotone subsequence.

3.4.8: Bolzano–Weierstrass theorem. A bounded sequence of real numbers has a convergent subsequence.

Thm 4.1.8. Sequential criterion. Let $f : A \to \mathbb{R}$ and c be a cluster point of A. Then $\lim_{x \to c} f = L$ iff for every (x_n) in $A \setminus \{c\}$ with limit c the sequence $(f(x_n))$ converges to L.

Thm 5.1.3. Sequential criterion for continuity: $f : A \to \mathbb{R}$ is continuous at $c \in A$ iff for every (x_n) in A that converges to c the sequence $(f(x_n))$ converges to $f(c)$.

Thm 5.3.2 Let $I = [a, b]$ be a closed bounded interval and $f : I \to \mathbb{R}$ be continuous on I. Then f is bounded on I, i.e. there is M such that $|f(x)| \leq M$ for all $x \in I$.

Thm 5.3.4 Let $I = [a, b]$ be a closed bounded interval and $f : I \to \mathbb{R}$ be continuous on I. Then f has an absolute maximum and an absolute minimum on I, i.e. there are points c, d in I such that $f(c) \leq f(x) \leq f(d)$ for all $x \in I$.