Math 310: Homework 8
due Nov 8, 9 2006 in recitation

Ex 1 Let $U \subset \mathbb{R}^4$ be the subspace given by the equations $x_1 + x_2 + x_3 + x_4 = 0$, $x_1 - x_2 + 2x_3 + x_4 = 0$.

(i) Find a basis of U. (Make the calculations easier by giving the vectors lots of zeros...)

(ii) Find an orthonormal basis of U.

(iii) Extend this to an orthonormal basis for \mathbb{R}^4. (First find any extension and then apply Gram–Schmidt.)

(iv) Let $v = (1, 2, 3, 4)$. Find the coordinates of V with respect to the basis you found in (iii).

Ex 2. Let e_1, \ldots, e_n be any basis of an inner product space V. Define $U := \text{span}(e_1, \ldots, e_k)$ and $W = \text{span}(e_{k+1}, \ldots, e_n)$. Also define $U^\perp := \{v : \langle v, u \rangle = 0, \forall u \in U\}$. ($U^\perp$ is called the orthogonal complement to U.)

(i) Show that $V = U \oplus W$.

(ii) Show that U^\perp is a subspace. Show also that $U^\perp = W$.

(iii) Deduce that for any subspace U of V, $V = U \oplus U^\perp$.

(iv) Now assume that $V = \mathbb{R}^4$ and that U is the subspace defined in Ex 1. Calculate the decomposition of $v = (1, 1, 1, 1)$ as a sum $u + w$ where $u \in U$ and $w \in U^\perp$.

Ex 3 Let V be the vector space of all $n \times n$ matrices over \mathbb{R}, and given any two matrices $A, B \in V$ define

$$\langle A, B \rangle = \text{trace}(AB) = \sum_{i,j} a_{ij}b_{ji}.$$

(i) Show that this satisfies all axioms for an inner product except possibly for positivity and nondegeneracy. (e.g. give an example (with $n = 2$) such that $A \neq 0$ but $\text{trace}A^2 = 0$.)

(ii) If A is a real symmetric matrix, show that $\text{trace}(A^2) \geq 0$, and $\text{trace}(A^2) > 0$ if $A \neq 0$. Thus the trace defines an inner product on the space of real symmetric matrices.

(iii) Let V be the symmetric space of real $n \times n$ symmetric matrices. What is dim V? What is the dimension of the subspace W consisting of those matrices A such that $\text{trace}(A) = 0$? What is the dimension of the orthogonal complement W^\perp relative to the inner product defined above?

Ex 4 Let A be an $n \times n$ matrix, and define $T \in \mathcal{L}(\mathbb{R}^n)$ by $Tv = Av$.

(i) Show that T is diagonalizable iff there exists an invertible matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.

(ii) How can you interpret the columns of the matrix Q? (Hint: think of these as vectors. What relation do they have to the operator T?)
Ex 5 Two linear operators S and T on a finite-dimensional vector space V are called *simultaneously diagonalizable* if there exists a basis \mathcal{B} for V such that both $M(S, \mathcal{B})$ and $M(T, \mathcal{B})$ are diagonal matrices. This is equivalent to saying that there is a basis for V consisting of vectors that are eigenvectors for both S and T.

(i) Prove that if S and T are simultaneously diagonalizable operators then S and T commute. (Hint: see what the operators ST and TS do to a suitable basis for V.)

(ii) (Bonus) Prove also that if S and T are diagonalizable operators that commute then they are simultaneously diagonalizable.

(iii) Let $T_A, T_B \in \mathcal{L}(\mathbb{F}^n)$ be the operators defined by multiplication by the matrices A, B. Show that T_A, T_B are simultaneously diagonalizable iff there is an invertible matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices. (cf Ex 4).

(iv) (Bonus) Deduce that if the matrices A, B commute there is an invertible matrix Q such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices.