This integral vanishes for any \((f(t), g(t)) = \text{odd function}\)\
\[\Rightarrow \text{if } f(t) = t \Rightarrow g(t) \text{ must contain } t, t^2 \text{ components only} \]
\[\text{in general, } g(t) = a + bt^2 \]
This is the space, but we need basis. Could it be \(a, bt^2\)? Let's check.

Normalization,
\[\langle a, a \rangle = \frac{1}{2} \int_{-1}^{1} a \cdot a \, dt = 1 \Rightarrow a^2 = 1 \rightarrow a = \pm 1 \]
\[\langle bt^2, bt^2 \rangle = \frac{1}{2} \left[\frac{1}{2} b^2 \cdot (t^2) \right]_{-1}^{1} = \frac{1}{2} b^2 \frac{4}{5} = 1 \]
\[\Rightarrow \frac{b^2}{5} = 1 \Rightarrow b = \pm \sqrt{5} \]

It seems that \((\pm 1, \pm \sqrt{5} t^2)\) might work as a basis. However, they are not orthogonal to each other. Their product is even function and the integral will not vanish.

There is two ways to find orthonormal basis,

Method one, start with \(1, t^2\). These are neither...
orthogonal nor parallel. Use these as starting vectors in "Gram-Schmidt" process

\[u_1 = \frac{\hat{v}_1}{\|\hat{v}_1\|} = 1 \quad \hat{v}_2 = \hat{v}_2 - (u_1, \hat{v}_2) u_1 \]

\[= \frac{t^2 - \frac{1}{3}}{\sqrt{\frac{4}{145}}} \int_{-1}^{1} (1 - t^2) \, dt = t^2 - \frac{1}{3} \]

\[\|\hat{v}_2\| = \sqrt{\frac{4}{145}} \]

\[\Rightarrow u_2 = \frac{t^2 - \frac{1}{3}}{\sqrt{\frac{4}{145}}} \]

\[\Rightarrow u_1, u_2 \text{ form the orthonormal basis} \]

\[\text{Method two,} \]

The space is \(a + bt^2 \). Dimension = 2. Assume a very general basis, \(\left\{ a_1 + b_1 t^2 \right\} \)

\(\left\{ a_2 + b_2 t^2 \right\} \)

we need to satisfy three conditions:

1) \(\frac{1}{2} \int_{-1}^{1} (a_1 + b_1 t^2)(a_1 + b_1 t^2) \, dt = 1 \) \(\rightarrow \) normalization

2) \(\frac{1}{2} \int_{-1}^{1} (a_2 + b_2 t^2)(a_2 + b_2 t^2) \, dt = 1 \)

3) \(\frac{1}{2} \int_{-1}^{1} (a_1 + b_1 t^2)(a_2 + b_2 t^2) \, dt = 0 \) \(\rightarrow \) orthogonality
Three equations in Four variables \(\rightarrow \) Many solutions

And this makes sense because the basis choice is not unique.

You may choose \([a_1=1]\) and solve the three eqn system to find an orthonormal basis.

\[\text{Sec 6.1} \]

8) \(\text{Det} = 1 \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} + 3 \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} = -1 + 4 - 3 = 0 \)

\(\Rightarrow \) Matrix is non-invertible

30) \[\begin{bmatrix} 4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0 \]

\(\Rightarrow (3-\lambda) \left[(6-\lambda)(4-\lambda) - 8 \right] = 0 \)

\(\left(\lambda^2 - 10\lambda + 16 \right) = (\lambda - 2)(\lambda - 8) \)

\(\Rightarrow \lambda = 2, 3, 8 \)

34) \(\text{Det} = -4 \begin{bmatrix} 4 & 5 & 0 \\ 3 & 6 & 0 \\ 1 & 8 & 2 \end{bmatrix} + 3 \begin{bmatrix} 4 & 5 & 0 \\ 3 & 6 & 0 \\ 2 & 7 & 1 \end{bmatrix} \)

\(= 2(24 - 15) - 1(24 - 15) \)

\(= -8 \times 9 + 3 \times 9 = -45 \)