Math 203 - Fall 2018
 Practice Problems for the Second Exam Instructor: Dror Varolin

1. A function $z=f(x, y)$ is defined implicitly by the equation

$$
z^{2}\left(1+x^{2} y^{2}\right)-8 z e^{y^{2}-4 x}=y-2 x+4
$$

and it is known that $f(1,2)$ is positive. Compute $\frac{\partial z}{\partial x}$ at $(x, y)=(1,2)$.
2. Consider the surface

$$
S=\left\{(x, y, z) ; e^{x z}+\left(x^{2}+y^{2}\right) z=3\right\} .
$$

(a) Find the equation for the plane tangent to S at the point $(0,1,2)$.
(b) Find the vector equation for the line perpendicular to S at the point $(0,1,2)$.
(c) Let $z=f(x, y)$ be a function defined implicitly by the requirement that $(x, y, z) \in S$. Compute

$$
\frac{\partial f}{\partial x}(0,1) \quad \text { and } \quad \frac{\partial f}{\partial y}(0,1) .
$$

3. Consider the function

$$
f(x, y)=e^{2 x^{2}(1+y)}
$$

(a) Find the directional derivative of f at the point $(1,-1)$ along the direction $\mathbf{u}_{o}=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$.
(b) Find the maximum value of $D_{\mathbf{u}} f(1,-1)$ among all unit vectors \mathbf{u}.
4. Find all of the critical points of the function

$$
f(x, y)=\frac{6}{7} x^{7}+4\left(y^{2}-1\right) x-\frac{1}{2} x^{4} .
$$

5. Find the absolute minimum and maximum values of the function

$$
f(x, y)=(x-1)^{2}+y^{2}
$$

on the filled-in ellipse

$$
\mathbf{E}=\left\{(x, y) ; 2 x^{2}+y^{2} \leq 6\right\},
$$

and the points at which the minimum and maximum are achieved.
6. Let (x, y, z) be coordinates in three dimensional space, with the vector $\langle 0,0,1\rangle$ defining the positive vertical direction (as usual). Find the highest point on the surface

$$
(x-y)^{2}+2(y-z)^{2}+(x+z)^{2}=10
$$

7. Compute the iterated integral

$$
\int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} e^{x^{2}+y^{2}} d x d y
$$

8. A conical cup has radius 1.5 inches and height 4 inches. The conical cup is used to transfer water from a reservoir to a cylindrical cup of radius 3 inches and height 6 inches. How many trips are needed to completely fill the cylindrical cup?
9. Find the integral of the function

$$
f(x, y, z)=\frac{x^{2} z}{x^{2}+y^{2}+z^{2}}
$$

over the half-ball

$$
C: \quad x^{2}+y^{2}+z^{2} \leq 4, \quad \text { and } \quad z \geq 0 .
$$

10. Find the mass of a conical ellipsoid

$$
K=\left\{(x, y, z) ; z^{2} \leq a^{2} x^{2}+b^{2} y^{2}, 0 \leq z \leq 4\right\}
$$

whose mass density is

$$
\rho(x, y, z)=\frac{2 z}{\sqrt{a^{2} x^{2}+b^{2} y^{2}}}
$$

