Homework 9 Solutions

§14.3
6. The boundary circle is given by

$$
\begin{aligned}
(x-0)^{2}+(y-2)^{2} & =2^{2} \\
(r \cos \theta)^{2}+(r \sin \theta-2)^{2} & =4
\end{aligned}
$$

Simplifying the last equation gives

$$
r=4 \sin \theta
$$

So the region is $R=\{(r, \theta): 0 \leq r \leq 4 \sin \theta, 0 \leq \theta \leq \pi\}$
10. The region lies in the first quadrant as shown below.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} r^{2} d r d \theta & =\int_{0}^{\pi / 2}\left(\left.\frac{r^{3}}{3}\right|_{0} ^{\sin \theta}\right) d \theta=\frac{1}{3} \int_{0}^{\pi / 2} \sin ^{3} \theta d \theta \\
& =\frac{1}{3} \int_{0}^{\pi / 2}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \\
& =\left.\frac{1}{3}\left[-\cos \theta+\frac{\cos ^{3} \theta}{3}\right]\right|_{0} ^{\pi / 2} \\
& =\frac{2}{9}
\end{aligned}
$$

26. The region we integrate over is the region bounded by the coordinate axes and the circle with radius $\sqrt{6}$ and center 0 . We can convert the integral into polar coordinates as follows.

$$
\int_{0}^{\sqrt{6}} \int_{0}^{\sqrt{6-x^{2}}} \sin \sqrt{x^{2}+y^{2}} d y d x=\int_{0}^{\pi / 2} \int_{0}^{\sqrt{6}}(\sin r) r d r d \theta
$$

Now integrating by parts, we get

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\sqrt{6}}(\sin r) r d r d \theta & =\frac{\pi}{2}\left[\left.(-r \cos r)\right|_{0} ^{\sqrt{6}}+\int_{0}^{\sqrt{6}} \cos r d r\right] \\
& =\frac{\pi}{2}(\sin \sqrt{6}-\sqrt{6} \cos \sqrt{6})
\end{aligned}
$$

36. We want to find the volume of the solid bounded by the graphs of the following equations: $z=\ln \left(x^{2}+y^{2}\right), z=0, x^{2}+y^{2} \geq 1$, $x^{2}+y^{2} \leq 4$. Denote the volume of the solid by V. Then,

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{1}^{2}\left(\ln r^{2}\right) r d r d \theta=\left.2 \pi \frac{1}{2}\left[r^{2} \ln \left(r^{2}\right)-r^{2}\right]\right|_{1} ^{2}=\pi[4 \ln 4-4+1] \\
& =\pi(8 \ln 2-3)
\end{aligned}
$$

44. The shaded region is $\{(r, \theta): 0 \leq r \leq 2+\sin \theta, 0 \leq \theta \leq 2 \pi\}$ So it has area

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{2+\sin \theta} r d r d \theta=\left.\frac{1}{2} \int_{0}^{2 \pi} r^{2}\right|_{0} ^{2+\sin \theta} d \theta=\frac{1}{2} \int_{0}^{2 \pi}(2+\sin \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(4+4 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& =4 \pi+\left.2[-\cos \theta]\right|_{0} ^{2 \pi}+\frac{1}{2} \int_{0}^{2 \pi} \frac{1-\cos 2 \theta}{2} d \theta=\frac{9 \pi}{2}
\end{aligned}
$$

§14.4
10. The region R is the triangle with vertices $(0,0),(a / 2, a),(a, 0)$. To find the center of mass of the lamina corresponding to R , we need to find the mass m, the moments of mass with respect to the x and y-axes, M_{x} and M_{y}.

(a) $\rho=k$

The mass $m=k \cdot \operatorname{Area}(\mathrm{R})=k a^{2} / 2$ is evident. The moment of mass with respect to the x -axis is

$$
M_{x}=\iint_{R} k y d A=k \int_{0}^{a} \int_{y / 2}^{a-y / 2} y d x d y=k \int_{0}^{a} y(a-y) d y=\frac{k a^{3}}{6}
$$

Calculations for M_{y} is similar.

$$
\begin{aligned}
M_{y} & =\iint_{R} k y d A=k \int_{0}^{a} \int_{y / 2}^{a-y / 2} x d x d y=\left.k \int_{0}^{a} \frac{x^{2}}{2}\right|_{y / 2} ^{a-y / 2} d y \\
& =\frac{k}{2} \int_{0}^{a}\left(a^{2}-a y\right) d y=\frac{k a^{3}}{4}
\end{aligned}
$$

So the center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)=\left(\frac{k a^{3} / 4}{k a^{2} / 2}, \frac{k a^{3} / 6}{k a^{2} / 2}\right)=\left(\frac{a}{2}, \frac{a}{3}\right)
$$

(b) $\rho=k x y$

$$
m=\int_{0}^{a} \int_{y / 2}^{a-y / 2} k x y d x d y=\frac{k}{2} \int_{0}^{a} y\left(a^{2}-y a\right) d y=\left.\frac{k}{2}\left(\frac{a^{2} y^{2}}{2}-\frac{y^{3} a}{3}\right)\right|_{0} ^{a}=\frac{k a^{4}}{12}
$$

$$
\begin{aligned}
M_{x} & =\int_{0}^{a} \int_{y / 2}^{a-y / 2} y \cdot k x y d x d y=\frac{k}{2} \int_{0}^{a} y^{2}\left(a^{2}-y a\right)=\frac{k}{2}\left(\left.a^{2} \frac{y^{3}}{3}\right|_{0} ^{a}-\left.a \frac{y^{4}}{4}\right|_{0} ^{a}\right) \\
& =\frac{k a^{5}}{24} \\
& M_{y}=\int_{0}^{a} \int_{y / 2}^{a-y / 2} x \cdot k x y d x d y=\left.k \int_{0}^{a} y \frac{x^{3}}{3}\right|_{y / 2} ^{a-y / 2} d y \\
& =\frac{k}{3} \int_{0}^{a} y\left(a^{3}-\frac{3 a^{2} y}{2}+\frac{3 a y^{2}}{4}-\frac{y^{3}}{4}\right) d y \\
& =\frac{11 k a^{5}}{240}
\end{aligned}
$$

So the center of mass is

$$
(x, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)=\left(\frac{11 a}{20}, \frac{a}{2}\right)
$$

16. The region is as below. We wish to find the center of mass with density $\rho=k$.

As before, we first calculate the mass.

$$
\begin{gathered}
m=k \iint_{R} d A=2 k \int_{0}^{1} \frac{1}{1+x^{2}} d x=\left.2 k \arctan x\right|_{0} ^{1}=\frac{k \pi}{2} \\
M_{x}=k \iint_{R} d A=\int_{-1}^{1} \int_{0}^{1 /\left(1+x^{2}\right)} y d y d x=\frac{1}{2} \int_{-1}^{1}\left(\frac{1}{1+x^{2}}\right)^{2} d x=\int_{0}^{1}\left(\frac{1}{1+x^{2}}\right)^{2} d x
\end{gathered}
$$

Let $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$. Then M_{x} becomes

$$
M_{x}=\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta}{\sec ^{4} \theta} d \theta=\int_{0}^{\pi / 4} \cos ^{2} \theta d \theta=k\left(\frac{\pi}{8}+\frac{1}{4}\right)
$$

$M_{y}=0$ since the lamina is symmetric with respect to the y -axis and the density is constant (which can be checked by direct computation).

$$
\left(x^{-}, \bar{y}\right)=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)=\left(0, \frac{1}{4}+\frac{1}{2 \pi}\right)
$$

24. The region is as shown, with density given to be $\rho=k\left(x^{2}+y^{2}\right)$

$$
\begin{aligned}
& m=\int_{0}^{\pi / 2} \int_{0}^{4} k r^{2} r d r d \theta=\left.\frac{\pi k}{2} \frac{r^{4}}{4}\right|_{0} ^{4}=32 \pi k \\
& M_{x}=\iint_{R} y \cdot k\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{4} r \sin \theta \cdot k r^{3} d r d \theta \\
& =\left.\left.(-\cos \theta)\right|_{0} ^{\pi / 2} \cdot \frac{k r^{5}}{5}\right|_{0} ^{4}=\frac{k 4^{5}}{5}
\end{aligned}
$$

Note that $M_{y}=M_{x}$ by symmetry. So, the center of mass

$$
(\bar{x}, \bar{y})=\left(\frac{32}{5 \pi}, \frac{32}{5 \pi}\right)
$$

34. Assume the lamina has constant density $\rho=1 \mathrm{~g} / \mathrm{cm}^{2}$. We want to find the moment of inertia and the radius of gyration with respect to both axes. First, we look at

$$
I_{x}=\iint_{R} y^{2} d A=4 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2} / a^{2}}} y^{2} d y d x=\frac{4}{3} b^{3} \int_{0}^{1}\left(1-\frac{x^{2}}{a^{2}}\right)^{\frac{3}{2}}
$$

Now we make a change of variable $x=a \sin \theta$, then

$$
I_{x}=\frac{4}{3} b^{3} \int_{0}^{\pi / 2} a \cos ^{4} \theta d \theta=\frac{4 a b^{3}}{3} \int_{0}^{\pi / 2}\left(\frac{1+\cos 2 \theta}{2}\right)^{2} d \theta=\frac{\pi}{4} a b^{3}
$$

Switching the role of a, b and x, y, one sees that

$$
I_{y}=\frac{\pi}{4} a^{3} b
$$

So,

$$
I_{0}=I_{x}+I_{y}=\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right)
$$

The mass $m=\rho \cdot \operatorname{Area}(\mathrm{R})=\pi a b$. The radii of gyrations with respect to both axes are

$$
\begin{aligned}
& \overline{\bar{x}}=\sqrt{\frac{I_{y}}{m}}=\frac{1}{2} a \\
& \overline{\bar{y}}=\sqrt{\frac{I_{x}}{m}}=\frac{1}{2} b
\end{aligned}
$$

46. The height at which a vertical gate in a dam should be hinged so that there is no moment causing rotation is given to be

$$
y_{a}=\bar{y}-\frac{I_{\bar{y}}}{h A}
$$

Observe that $\bar{y}=0, h=d+a$ and $A=\pi a^{2}$. From Q34, we also know that $I_{\bar{y}}=\frac{\pi}{4} a^{4}$. By the model above, we get

$$
y_{a}=-\frac{a^{2}}{4(d+a)}
$$

§14.5
6. We will find the surface area of the plane $z=f(x, y)$, where $f(x, y)=12+2 x-3 y$ over the region $R=(x, y): x^{2}+y^{2} \leq 9$. The partial derivatives are

$$
f_{x}=2, \quad f_{y}=3
$$

So the surface area is

$$
S=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A=\iint_{R} \sqrt{14} d A=9 \sqrt{14} \pi
$$

16. Here $f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}}$ and $R=\left\{(x, y): x^{2}+y^{2} \leq\right.$ $\left.a^{2}\right\}$. As in Q6, we calculate the first partials.

$$
f_{x}=-x\left(a^{2}-x^{2}-y^{2}\right)^{-1 / 2}, \quad f_{y}=-y\left(a^{2}-x^{2}-y^{2}\right)^{-1 / 2}
$$

So the surface area is

$$
S=\int_{0}^{\pi} \int_{0}^{a} \frac{a}{\sqrt{a^{2}-r^{2}}} r d r d \theta=2 \pi a^{2}
$$

20. The surface is the portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=4$

$$
S=4 \sqrt{5} \pi
$$

See Q38 of this section.
30. $f(x, y)=\cos \left(x^{2}+y^{2}\right), R=\left\{(x, y): x^{2}+y^{2} \leq \pi / 2\right\}$ The first partials are

$$
f_{x}=-2 \sin \left(x^{2}+y^{2}\right) x, \quad f_{y}=-2 \sin \left(x^{2}+y^{2}\right) y
$$

To set up the double integral for the surface area, we switch to polar coordinates.

$$
\begin{aligned}
S & =\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A=\iint_{R} \sqrt{1+4\left(x^{2}+y^{2}\right) \sin \left(x^{2}+y^{2}\right)} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{\pi / 2}} \sqrt{1+4 r^{2} \sin ^{2} r^{2}} r d r d \theta
\end{aligned}
$$

38. This is a general case for Q20. We need to show that the surface area of the cone $z=k \sqrt{x^{2}+y^{2}}$ over the region $R=\{(x, y)$: $\left.x^{2}+y^{2} \leq r^{2}\right\}$ is $\pi r^{2} \sqrt{k^{2}+1}$.

$$
f_{x}=\frac{k x}{\sqrt{x^{2}+y^{2}}}, \quad f_{y}=\frac{k y}{\sqrt{x^{2}+y^{2}}} .
$$

The surface area is hence

$$
\begin{aligned}
S & =\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A=\iint_{R} \sqrt{1+k^{2}} d A=\operatorname{Area}(\mathrm{R}) \sqrt{1+k^{2}} \\
& =\pi r^{2} \sqrt{k^{2}+1}
\end{aligned}
$$

