
Homework 8 solutions

§13.9
14. The problem can be translated into the following form: find the maximum of xyz under the
constraint x2 + y2 + z2 = r2, x, y, z > 0. After converting z =

√
r2 − x2 − y2, our problem is to

find the maximum of f(x, y) = xy
√
r2 − x2 − y2 for x, y > 0.

Now we find critical points of f . One can compute the gradient of f , and it is the following.

∇f =

〈
y√

r2 − x2 − y2
(r2 − 2x2 − y2), x√

r2 − x2 − y2
(r2 − x2 − 2y2)

〉
.

Thus, the critical points satisfy the equation r2 − 2x2 − y2 = r2 − x2 − 2y2 = 0. Solving it, we get
a single critical point (x, y) = ( 1√

3
r, 1√

3
r). To use second partials test, we need to compute all the

second partial derivatives:

fxx =
xy(−3r2 + 2x2 + 3y2)

(r2 − x2 − y2)
3
2

, fyy =
xy(−3r2 + 3x2 + 2y2)

(r2 − x2 − y2)
3
2

,

fxy =
r4 − 3r2(x2 + y2) + (2x4 + 3x2y2 + 2y4)

(r2 − x2 − y2)
3
2

.

At the critical point (x, y) = ( 1√
3
r, 1√

3
r), we have fxx = fyy = − 4√

3
r and fxy = − 2√

3
r. Hence

d = fxxfyy − (fxy)
2 = 4r2 > 0 and fxx = − 4√

3
r < 0. Using the second partials test, we conclude

the critical point point x = y = z = 1√
3
r is a relative maximum point.

18. The question is to find the maximum of H = −x lnx − y ln y − z ln z under the constraint
x+ y+ z = 1. From the constraint, we can eliminate the variable z as z = 1− x− y, and hence we
have a two-variable function H(x, y) = −x lnx− y ln y − (1− x− y) ln(1− x− y).

The gradient of H is

∇H = 〈− lnx+ ln(1− x− y),− ln y + ln(1− x− y)〉.

From it, the critical points of H are the solutions of the equation − lnx+ ln(1− x− y) = − ln y +
ln(1 − x − y) = 0. Solving the equation yields a single critical point (x, y) =

(
1
3 ,

1
3

)
. To use the

second partials test, we need all the second partial derivatives

Hxx = −1

x
− 1

1− x− y
, Hxy = − 1

1− x− y
, Hyy = −1

y
− 1

1− x− y
.

Thus, at the critical point x = y = 1
3 , we have d = HxxHyy−(Hxy)

2 = (−6)×(−6)−(−3)2 = 27 > 0
and Hxy = −6 < 0. This tells us x = y = z = 1

3 is a relative maximum point. At this point, it
achieves the maximum value H = −1

3 ln
(
1
3

)
× 3 = ln 3.
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§13.10
10. Define a function g(x, y) = 2x+ 4y. We want to compute the minimum of f(x, y) =

√
x2 + y2

under the constraint g(x, y) = 15. Apply the Lagrange multiplier method. To do so, we need to
solve the equations ∇f = λ∇g and g = 15. Computing ∇f and ∇g, this is〈

x√
x2 + y2

,
y√

x2 + y2

〉
= λ〈2, 4〉, 2x+ 4y = 15.

Manipulating the equations, we have y = 2x = 4λ
√
x2 + y2, whence x = 3

2 , y = 3. Thus, the

minimum value is f(32 , 3) = 3
2

√
5.

28. The distance between two points (4, 0, 0) and (x, y, z) is measured by
√

(x− 4)2 + y2 + z2.
Thus, we need to minimize the function f(x, y, z) = (x − 4)2 + y2 + z2 under the constraint
g(x, y, z) =

√
x2 + y2 − z = 0. Apply the Lagrange multiplier method. The gradients are ∇f =

〈2(x − 4), 2y, 2z〉 and ∇g =

〈
x√
x2+y2

, y√
x2+y2

,−1

〉
. For simplicity, we exclude the possibility

x = y = z = 0 to use the fraction 1√
x2+y2

freely. Lagrange multiplier method requires us to solve

the equations

〈2(x− 4), 2y, 2z〉 = λ

〈
x√

x2 + y2
,

y√
x2 + y2

,−1

〉
, z =

√
x2 + y2.

Manipulating the equalities, we get

2(x− 4) =
λ√

x2 + y2
x, 2y =

λ√
x2 + y2

y,
λ√

x2 + y2
= −2.

From the first and third equality, we get x = 2. From the second and third equality, we get y = 0.
Hence z =

√
22 + 02 = 2. That is, the minimum value of the function f is f(2, 0, 2) = 8. Therefore,

the minimum distance is 2
√

2.

46. Let g(x, y, z) = x2 + y2 + z2 and h(x, y, z) = x− z. Use the Lagrange multiplier method. We
need to solve the equation ∇T = λ∇g + µ∇h, g = 50 and h = 0. Computing the gradients, these
are

〈2x, 2y, 0〉 = 〈2λx+ µ, 2λy, 2λz − µ〉, x2 + y2 + z2 = 50, x = z.

One can solve these and get the solutions (x, y, z) = (0,±5
√

2, 0), (±5, 0,±5). Now T (0,±5
√

2, 0) =
150 and T (±5, 0,±5) = 125. This means the maximum temperature is 150.

48. We want to compute the minimum perimeter f(l, h) =
(
π
2 + 1

)
l + 2h under the fixed area

constraint g(l, h) = π
8 l

2 + lh = A. Using Lagrange multiplier method, we need to solve the equation

λ
〈π

2
+ 1, 2

〉
=
〈π

4
l + h, l

〉
,

π

8
l2 + lh = A.

Solving the equations leads l = 2
√

A
π
2
+2 and h =

√
A
π
2
+2 . These values give us the minimum

perimeter 2
√(

π
2 + 2

)
A. Note that we had l = 2h.
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§14.1
12. We have the sequence of identities∫ 1

−1

∫ 2

−2
(x2 − y2)dydx =

∫ 1

−1

(
x2y − y3

3

∣∣∣∣2
−2

)
dx

=

∫ 1

−1

(
4x2 − 16

3

)
dx =

4

3
x3 − 16

3
x

∣∣∣∣1
−1

= −8.

28. We have the sequence of identities∫ π
4

0

∫ cos θ

0
3r2 sin θdrdθ =

∫ π
4

0

(
r3 sin θ

∣∣∣∣cos θ
0

)
dθ

=

∫ π
4

0
sin θ cos3 θdθ = −

∫ 1√
2

1
u3du =

3

16
.

In the last part, we have used the substitution u = cos θ.

48. From the picture, we can change the order of the integration in the following way.

∫ 2

−1

∫ e−x

0
f(x, y)dydx =

∫∫
R
f(x, y)dA =

∫ e−2

0

∫ 2

−1
f(x, y)dxdy +

∫ e

e−2

∫ − ln y

−1
f(x, y)dxdy.

66. We have the sequence of identities
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∫ 2

0

∫ 4

y2

√
x sinxdxdy =

∫∫
R

√
x sinxdA =

∫ 4

0

∫ √x
0

√
x sinxdydx

=

∫ 4

0
x sinxdx = −x cosx+ sinx

∣∣∣∣4
0

= −4 cos 4 + sin 4.

The first line is the change of order of integrations, and the second line is further computations of
the order-changed integration.

§14.2
6. Dividing the rectangle [0, 4]× [0, 2] by eight 1× 1 squares, we have eight centers of squares

p1 =

(
1

2
,
1

2

)
, p2 =

(
1

2
,
3

2

)
, · · · , p7 =

(
7

2
,
1

2

)
, p8 =

(
7

2
,
3

2

)
.

Hence the approximation is

8∑
i=1

f(pi)∆Ai =
1(

1
2 + 1

) (
1
2 + 1

) × 1 +
1(

1
2 + 1

) (
3
2 + 1

) × 1 + · · ·+ 1(
7
2 + 1

) (
3
2 + 1

) × 1

=
7936

4725
≈ 1.68.

18. Draw the picture and convince yourself that we have two different ways to compute the given
double integration: ∫∫

R

y

1 + x2
dA =

∫ 4

0

∫ √x
0

y

1 + x2
dydx

=

∫ 2

0

∫ 4

y2

y

1 + x2
dxdy.
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We will use the first one. Computing it further, we have∫ 4

0

∫ √x
0

y

1 + x2
dydx =

∫ 4

0

(
y2

2(1 + x2)

∣∣∣∣
√
x

0

)
dx =

∫ 4

0

x

2(1 + x2)
dx

=
1

4

∫ 16

0

1

1 + u
du =

1

4
ln(1 + u)

∣∣∣∣16
0

=
1

4
ln 17.

During the computation, we have used the substitution u = x2.

36. The intersection locus of the given two graphs z = x2 + y2 and z = 2x can be obtained by
solving the equation z = x2 + y2 = 2x. Solving it, the (x, y)-coordinate of the intersection locus
is given by (x − 1)2 + y2 = 1, a circle of center (1, 0) and radius 1. The volume between the two
graphs can be computed by integrating the difference of z-values of the two graphs, along the region
(x− 1)2 + y2 ≤ 1. Writing R as the region

R = {(x, y) : (x− 1)2 + y2 ≤ 1},

the desired volume can be measured by the double integration
∫∫
R(2x− (x2 + y2))dA.

58. Let R = [0, 2]× [0, 4] be the region on which we are measuring the temperature. The average
temperature on the region is

1

area(R)

∫∫
R
TdA =

1

8

∫ 2

0

∫ 4

0
(20− 4x2 − y2)dydx

=
1

8

∫ 2

0

(
(20− 4x2)y − y3

3

∣∣∣∣4
0

)
dx =

∫ 2

0

(
−2x2 +

22

3

)
dx = −2

3
x3 +

22

3
x

∣∣∣∣2
0

=
28

3
.
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