Homework 8 solutions

§13.9

14. The problem can be translated into the following form: find the maximum of $x y z$ under the constraint $x^{2}+y^{2}+z^{2}=r^{2}, x, y, z>0$. After converting $z=\sqrt{r^{2}-x^{2}-y^{2}}$, our problem is to find the maximum of $f(x, y)=x y \sqrt{r^{2}-x^{2}-y^{2}}$ for $x, y>0$.

Now we find critical points of f. One can compute the gradient of f, and it is the following.

$$
\nabla f=\left\langle\frac{y}{\sqrt{r^{2}-x^{2}-y^{2}}}\left(r^{2}-2 x^{2}-y^{2}\right), \frac{x}{\sqrt{r^{2}-x^{2}-y^{2}}}\left(r^{2}-x^{2}-2 y^{2}\right)\right\rangle .
$$

Thus, the critical points satisfy the equation $r^{2}-2 x^{2}-y^{2}=r^{2}-x^{2}-2 y^{2}=0$. Solving it, we get a single critical point $(x, y)=\left(\frac{1}{\sqrt{3}} r, \frac{1}{\sqrt{3}} r\right)$. To use second partials test, we need to compute all the second partial derivatives:

$$
\begin{gathered}
f_{x x}=\frac{x y\left(-3 r^{2}+2 x^{2}+3 y^{2}\right)}{\left(r^{2}-x^{2}-y^{2}\right)^{\frac{3}{2}}}, \quad f_{y y}=\frac{x y\left(-3 r^{2}+3 x^{2}+2 y^{2}\right)}{\left(r^{2}-x^{2}-y^{2}\right)^{\frac{3}{2}}} \\
f_{x y}=\frac{r^{4}-3 r^{2}\left(x^{2}+y^{2}\right)+\left(2 x^{4}+3 x^{2} y^{2}+2 y^{4}\right)}{\left(r^{2}-x^{2}-y^{2}\right)^{\frac{3}{2}}} .
\end{gathered}
$$

At the critical point $(x, y)=\left(\frac{1}{\sqrt{3}} r, \frac{1}{\sqrt{3}} r\right)$, we have $f_{x x}=f_{y y}=-\frac{4}{\sqrt{3}} r$ and $f_{x y}=-\frac{2}{\sqrt{3}} r$. Hence $d=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=4 r^{2}>0$ and $f_{x x}=-\frac{4}{\sqrt{3}} r<0$. Using the second partials test, we conclude the critical point point $x=y=z=\frac{1}{\sqrt{3}} r$ is a relative maximum point.
18. The question is to find the maximum of $H=-x \ln x-y \ln y-z \ln z$ under the constraint $x+y+z=1$. From the constraint, we can eliminate the variable z as $z=1-x-y$, and hence we have a two-variable function $H(x, y)=-x \ln x-y \ln y-(1-x-y) \ln (1-x-y)$.

The gradient of H is

$$
\nabla H=\langle-\ln x+\ln (1-x-y),-\ln y+\ln (1-x-y)\rangle .
$$

From it, the critical points of H are the solutions of the equation $-\ln x+\ln (1-x-y)=-\ln y+$ $\ln (1-x-y)=0$. Solving the equation yields a single critical point $(x, y)=\left(\frac{1}{3}, \frac{1}{3}\right)$. To use the second partials test, we need all the second partial derivatives

$$
H_{x x}=-\frac{1}{x}-\frac{1}{1-x-y}, \quad H_{x y}=-\frac{1}{1-x-y}, \quad H_{y y}=-\frac{1}{y}-\frac{1}{1-x-y} .
$$

Thus, at the critical point $x=y=\frac{1}{3}$, we have $d=H_{x x} H_{y y}-\left(H_{x y}\right)^{2}=(-6) \times(-6)-(-3)^{2}=27>0$ and $H_{x y}=-6<0$. This tells us $x=y=z=\frac{1}{3}$ is a relative maximum point. At this point, it achieves the maximum value $H=-\frac{1}{3} \ln \left(\frac{1}{3}\right) \times 3=\ln 3$.

§13.10

10. Define a function $g(x, y)=2 x+4 y$. We want to compute the minimum of $f(x, y)=\sqrt{x^{2}+y^{2}}$ under the constraint $g(x, y)=15$. Apply the Lagrange multiplier method. To do so, we need to solve the equations $\nabla f=\lambda \nabla g$ and $g=15$. Computing ∇f and ∇g, this is

$$
\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle=\lambda\langle 2,4\rangle, \quad 2 x+4 y=15 .
$$

Manipulating the equations, we have $y=2 x=4 \lambda \sqrt{x^{2}+y^{2}}$, whence $x=\frac{3}{2}, y=3$. Thus, the minimum value is $f\left(\frac{3}{2}, 3\right)=\frac{3}{2} \sqrt{5}$.
28. The distance between two points $(4,0,0)$ and (x, y, z) is measured by $\sqrt{(x-4)^{2}+y^{2}+z^{2}}$. Thus, we need to minimize the function $f(x, y, z)=(x-4)^{2}+y^{2}+z^{2}$ under the constraint $g(x, y, z)=\sqrt{x^{2}+y^{2}}-z=0$. Apply the Lagrange multiplier method. The gradients are $\nabla f=$ $\langle 2(x-4), 2 y, 2 z\rangle$ and $\nabla g=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}},-1\right\rangle$. For simplicity, we exclude the possibility $x=y=z=0$ to use the fraction $\frac{1}{\sqrt{x^{2}+y^{2}}}$ freely. Lagrange multiplier method requires us to solve the equations

$$
\langle 2(x-4), 2 y, 2 z\rangle=\lambda\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}},-1\right\rangle, \quad z=\sqrt{x^{2}+y^{2}} .
$$

Manipulating the equalities, we get

$$
2(x-4)=\frac{\lambda}{\sqrt{x^{2}+y^{2}}} x, \quad 2 y=\frac{\lambda}{\sqrt{x^{2}+y^{2}}} y, \quad \frac{\lambda}{\sqrt{x^{2}+y^{2}}}=-2 .
$$

From the first and third equality, we get $x=2$. From the second and third equality, we get $y=0$. Hence $z=\sqrt{2^{2}+0^{2}}=2$. That is, the minimum value of the function f is $f(2,0,2)=8$. Therefore, the minimum distance is $2 \sqrt{2}$.
46. Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$ and $h(x, y, z)=x-z$. Use the Lagrange multiplier method. We need to solve the equation $\nabla T=\lambda \nabla g+\mu \nabla h, g=50$ and $h=0$. Computing the gradients, these are

$$
\langle 2 x, 2 y, 0\rangle=\langle 2 \lambda x+\mu, 2 \lambda y, 2 \lambda z-\mu\rangle, \quad x^{2}+y^{2}+z^{2}=50, \quad x=z .
$$

One can solve these and get the solutions $(x, y, z)=(0, \pm 5 \sqrt{2}, 0),(\pm 5,0, \pm 5)$. Now $T(0, \pm 5 \sqrt{2}, 0)=$ 150 and $T(\pm 5,0, \pm 5)=125$. This means the maximum temperature is 150 .
48. We want to compute the minimum perimeter $f(l, h)=\left(\frac{\pi}{2}+1\right) l+2 h$ under the fixed area constraint $g(l, h)=\frac{\pi}{8} l^{2}+l h=A$. Using Lagrange multiplier method, we need to solve the equation

$$
\lambda\left\langle\frac{\pi}{2}+1,2\right\rangle=\left\langle\frac{\pi}{4} l+h, l\right\rangle, \quad \frac{\pi}{8} l^{2}+l h=A .
$$

Solving the equations leads $l=2 \sqrt{\frac{A}{\frac{\pi}{2}+2}}$ and $h=\sqrt{\frac{A}{2}+2}$. These values give us the minimum perimeter $2 \sqrt{\left(\frac{\pi}{2}+2\right) A}$. Note that we had $l=2 h$.

§14.1

12. We have the sequence of identities

$$
\begin{aligned}
\int_{-1}^{1} \int_{-2}^{2}\left(x^{2}-y^{2}\right) d y d x & =\int_{-1}^{1}\left(x^{2} y-\left.\frac{y^{3}}{3}\right|_{-2} ^{2}\right) d x \\
& =\int_{-1}^{1}\left(4 x^{2}-\frac{16}{3}\right) d x=\frac{4}{3} x^{3}-\left.\frac{16}{3} x\right|_{-1} ^{1}=-8 .
\end{aligned}
$$

28. We have the sequence of identities

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos \theta} 3 r^{2} \sin \theta d r d \theta & =\int_{0}^{\frac{\pi}{4}}\left(\left.r^{3} \sin \theta\right|_{0} ^{\cos \theta}\right) d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \sin \theta \cos ^{3} \theta d \theta=-\int_{1}^{\frac{1}{\sqrt{2}}} u^{3} d u=\frac{3}{16}
\end{aligned}
$$

In the last part, we have used the substitution $u=\cos \theta$.
48. From the picture, we can change the order of the integration in the following way.

$$
\int_{-1}^{2} \int_{0}^{e^{-x}} f(x, y) d y d x=\iint_{R} f(x, y) d A=\int_{0}^{e^{-2}} \int_{-1}^{2} f(x, y) d x d y+\int_{e^{-2}}^{e} \int_{-1}^{-\ln y} f(x, y) d x d y .
$$

66. We have the sequence of identities

$$
\begin{aligned}
\int_{0}^{2} \int_{y^{2}}^{4} \sqrt{x} \sin x d x d y=\iint_{R} \sqrt{x} \sin x d A & =\int_{0}^{4} \int_{0}^{\sqrt{x}} \sqrt{x} \sin x d y d x \\
& =\int_{0}^{4} x \sin x d x=-x \cos x+\left.\sin x\right|_{0} ^{4}=-4 \cos 4+\sin 4
\end{aligned}
$$

The first line is the change of order of integrations, and the second line is further computations of the order-changed integration.

$\S 14.2$

6 . Dividing the rectangle $[0,4] \times[0,2]$ by eight 1×1 squares, we have eight centers of squares

$$
p_{1}=\left(\frac{1}{2}, \frac{1}{2}\right), p_{2}=\left(\frac{1}{2}, \frac{3}{2}\right), \cdots, p_{7}=\left(\frac{7}{2}, \frac{1}{2}\right), p_{8}=\left(\frac{7}{2}, \frac{3}{2}\right) .
$$

Hence the approximation is

$$
\begin{aligned}
\sum_{i=1}^{8} f\left(p_{i}\right) \Delta A_{i} & =\frac{1}{\left(\frac{1}{2}+1\right)\left(\frac{1}{2}+1\right)} \times 1+\frac{1}{\left(\frac{1}{2}+1\right)\left(\frac{3}{2}+1\right)} \times 1+\cdots+\frac{1}{\left(\frac{7}{2}+1\right)\left(\frac{3}{2}+1\right)} \times 1 \\
& =\frac{7936}{4725} \approx 1.68
\end{aligned}
$$

18. Draw the picture and convince yourself that we have two different ways to compute the given double integration:

$$
\begin{aligned}
\iint_{R} \frac{y}{1+x^{2}} d A & =\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y}{1+x^{2}} d y d x \\
& =\int_{0}^{2} \int_{y^{2}}^{4} \frac{y}{1+x^{2}} d x d y
\end{aligned}
$$

We will use the first one. Computing it further, we have

$$
\begin{aligned}
\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y}{1+x^{2}} d y d x=\int_{0}^{4}\left(\left.\frac{y^{2}}{2\left(1+x^{2}\right)}\right|_{0} ^{\sqrt{x}}\right) d x & =\int_{0}^{4} \frac{x}{2\left(1+x^{2}\right)} d x \\
& =\frac{1}{4} \int_{0}^{16} \frac{1}{1+u} d u=\left.\frac{1}{4} \ln (1+u)\right|_{0} ^{16}=\frac{1}{4} \ln 17
\end{aligned}
$$

During the computation, we have used the substitution $u=x^{2}$.
36. The intersection locus of the given two graphs $z=x^{2}+y^{2}$ and $z=2 x$ can be obtained by solving the equation $z=x^{2}+y^{2}=2 x$. Solving it, the (x, y)-coordinate of the intersection locus is given by $(x-1)^{2}+y^{2}=1$, a circle of center $(1,0)$ and radius 1 . The volume between the two graphs can be computed by integrating the difference of z-values of the two graphs, along the region $(x-1)^{2}+y^{2} \leq 1$. Writing R as the region

$$
R=\left\{(x, y):(x-1)^{2}+y^{2} \leq 1\right\}
$$

the desired volume can be measured by the double integration $\iint_{R}\left(2 x-\left(x^{2}+y^{2}\right)\right) d A$.
58. Let $R=[0,2] \times[0,4]$ be the region on which we are measuring the temperature. The average temperature on the region is

$$
\begin{aligned}
\frac{1}{\operatorname{area}(R)} \iint_{R} T d A & =\frac{1}{8} \int_{0}^{2} \int_{0}^{4}\left(20-4 x^{2}-y^{2}\right) d y d x \\
& =\frac{1}{8} \int_{0}^{2}\left(\left(20-4 x^{2}\right) y-\left.\frac{y^{3}}{3}\right|_{0} ^{4}\right) d x=\int_{0}^{2}\left(-2 x^{2}+\frac{22}{3}\right) d x=-\frac{2}{3} x^{3}+\left.\frac{22}{3} x\right|_{0} ^{2}=\frac{28}{3} .
\end{aligned}
$$

