
Homework 7 solutions

§13.7
12. Introduce a new variable z and a function F (x, y, z) = f(x, y)−z = x2−2xy+y2−z. Then the
graph z = f(x, y) of the function f is the same thing as the level surface F (x, y, z) = 0 of F . Now
the tangent plane of the level surface F (x, y, z) = 0 at the point (1, 2, 1) is defined by the equation

∇F (1, 2, 1) · 〈x− 1, y − 2, z − 1〉 = 0.

Computation shows that the gradient of F is ∇F = 〈2x− 2y,−2x+ 2y,−1〉. Hence ∇F (1, 2, 1) =
〈−2, 2,−1〉. Hence the equation above becomes−2(x−1)+2(y−2)−(z−1) = 0. After simplification,
it is 2x− 2y + z = −1.

16. Define a function F (x, y, z) = x2 − y2 + 2z2. Its gradient is ∇F = 〈2x,−2y, 4z〉. Hence,
∇F (1, 3,−2) = 〈2,−6,−8〉 and the defining equation of the tangent plane at (1, 3,−2) is

〈2,−6,−8〉 · 〈x− 1, y − 3, z + 2〉 = 0.

Simplifying it, we get 2x− 6y − 8z = 0.

26. Note that the given equation can be simplified as y(lnx + 2 ln z) = 2. Define a function
F (x, y, z) = y(lnx+ 2 ln z). Then our surface is the level surface F (x, y, z) = 2.

(a) The gradient of F is

∇F =

〈
y

x
, lnx+ 2 ln z,

2y

z

〉
.

The defining equation of the tangent plane at (e, 2, 1) is

∇F (e, 2, 1) · 〈x− e, y − 2, z − 1〉 = 0.

After computation, we get 2
ex+ y + 4z = 8.

(b) The normal line has a directional vector ∇F (e, 2, 1) = 〈2e , 1, 4〉 and it passes through (e, 2, 1).
Thus, its defining equation is

x− e
2
e

= y − 2 =
z − 1

4
.

40. Letting F (x, y, z) = 4x2 + 4xy − 2y2 + 8x− 5y − 4− z, the graph of the given equation is the
the level surface F (x, y, z) = 0. Hence, the normal vector of the tangent plane is its gradient vector
F (x, y, z), which is

∇F = 〈8x+ 4y + 8, 4x− 4y − 5,−1〉.

Note that the tangent plane is horizontal if and only if both x and y coordinates of ∇F vanish.
This happens when 8x+ 4y + 8 = 4x− 4y − 5 = 0. Solving the equation gives us x = −1

4 , y = −3
2 .

The z-coordinate can be computed by substituting (x, y) =
(
−1

4 ,−
3
2

)
into the relation z = 4x2 +

4xy − 2y2 + 8x− 5y − 4. This gives z = −17
4 . Hence the desired point is

(
−1

4 ,−
3
2 ,−

17
4

)
.
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50. Define F (x, y, z) = x2+4y2−z2. Let (a, b, c) be a point lying on the level surface F (x, y, z) = 1.
The gradient vector ∇F (a, b, c) = 〈2a, 8b,−2c〉 represents the normal vector of the tangent plane
at (a, b, c). Hence, the tangent plane is parallel to the plane x+ 4y − z = 0 when

〈2a, 8b,−2c〉 = λ〈1, 4,−1〉.

Solving the equation, we get a = b = c = λ
2 . Note that our point (a, b, c) lies on the level surface

F (x, y, z) = 0. This implies an additional relation a2 + 4b2 − c2 = 1, and thus we can conclude
λ = ±1. This means (a, b, c) =

(
1
2 ,

1
2 ,

1
2

)
or
(
−1

2 ,−
1
2 ,−

1
2

)
.

§13.8
8. The given function can be rewritten as f(x, y) = −(x−5)2− (y−6)2−3. In this form, it is clear
that f(x, y) ≤ −3 for all (x, y). The value −3 can actually be achieved at (x, y) = (5, 6). Hence
the absolute maximum is −3.

On the other hand, one can compute the gradient∇f = 〈−2(x−5),−2(y−6)〉. Solving the equation
∇f = 〈0, 0〉 yields the critical point (x, y) = (5, 6). Indeed, this point was the absolute maximum
point.

20. One can compute the gradient ∇h =
〈
2
3x(x2 + y2)−

2
3 , 23y(x2 + y2)−

2
3

〉
. Recall that the critical

point is either a solution of ∇h = 〈0, 0〉, or a point where ∇h is undefined. Here the equation
∇h = 〈0, 0〉 does not have a solution, but ∇h is undefined at (0, 0). Hence the critical point is
(0, 0).

Now compute all the second partial derivatives. These are

fxx =
2

3
(x2 + y2)−

2
3 − 8

3
x2(x2 + y2)−

5
3 , fyy =

2

3
(x2 + y2)−

2
3 − 8

3
y2(x2 + y2)−

5
3 ,

fxy = −8

3
xy(x2 + y2)−

5
3 .

These second partial derivatives are again undefined at (0, 0). Thus the second partials test does
not apply, and the test is inconclusive.

Note that from the given form of the function h(x, y) = (x2 + y2)
1
3 + 2, it is clear that the point

(0, 0) yields an absolute minimum 2. This tells us that even though (0, 0) is a relative minimum
point, it is possible that the second partials test cannot detect the answer.

34. The value d = fxx(x0, y0)fyy(x0, y0) − fxy(x0, y0)2 = 100 is positive, and fxx(x0, y0) is also
positive. Hence the situation describes a relative minimum point.

46. Define a new function g(t) = 2t
t2+1

. Then the given function f is just f(x, y) = g(x)g(y). We
first compute the absolute minimum and maximum of g(t) for 0 ≤ t ≤ 1. This is a single variable
function, so one can apply various methods to determine its extrema (that we have learned in
Calculus I).

One way to compute the extrema of g is the following. The function g has a derivative g′(t) =

2



−t2+1
(t2+1)2

. Since we have a restriction 0 ≤ t ≤ 1, we conclude g′(t) ≥ 0 and hence g is an increasing

function on [0, 1]. It follows g(t) has the absolute minimum g(0) = 0 and maximum g(1) = 1.

Returning to the original problem, recall that f(x, y) = g(x)g(y) and 0 ≤ x, y ≤ 1. Since we know
0 ≤ g(t) ≤ 1 when 0 ≤ t ≤ 1, we can conclude 0 ≤ g(x)g(y) ≤ 1. Hence, the absolute minimum of
f(x, y) is 0 and it occurs when x = 0 or y = 0. The absolute maximum of f(x, y) is 1 and it occurs
only when x = y = 1.

48. The gradient of the function is

∇f = 〈−2x(y − 1)2(z + 2)2,−2x2(y − 1)(z + 2)2,−2x2(y − 1)2(z + 2)〉.

To compute critical points, we need to solve the equation ∇f = 〈0, 0, 0〉. This gives us the whole
locus of critical points x = 0 or y = 1 or z = −2. In fact, these are all absolute maximum
points. From the form of the given function f(x, y, z) = 9− x2(y − 1)2(z + 2)2, we can clearly see
f(x, y, z) ≤ 9 and the equality holds exactly when x = 0 or y = 1 or z = −2. This was exactly the
critical locus.
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