Homework 7 solutions

§13.7

12. Introduce a new variable z and a function $F(x, y, z)=f(x, y)-z=x^{2}-2 x y+y^{2}-z$. Then the graph $z=f(x, y)$ of the function f is the same thing as the level surface $F(x, y, z)=0$ of F. Now the tangent plane of the level surface $F(x, y, z)=0$ at the point $(1,2,1)$ is defined by the equation

$$
\nabla F(1,2,1) \cdot\langle x-1, y-2, z-1\rangle=0 .
$$

Computation shows that the gradient of F is $\nabla F=\langle 2 x-2 y,-2 x+2 y,-1\rangle$. Hence $\nabla F(1,2,1)=$ $\langle-2,2,-1\rangle$. Hence the equation above becomes $-2(x-1)+2(y-2)-(z-1)=0$. After simplification, it is $2 x-2 y+z=-1$.
16. Define a function $F(x, y, z)=x^{2}-y^{2}+2 z^{2}$. Its gradient is $\nabla F=\langle 2 x,-2 y, 4 z\rangle$. Hence, $\nabla F(1,3,-2)=\langle 2,-6,-8\rangle$ and the defining equation of the tangent plane at $(1,3,-2)$ is

$$
\langle 2,-6,-8\rangle \cdot\langle x-1, y-3, z+2\rangle=0 .
$$

Simplifying it, we get $2 x-6 y-8 z=0$.
26. Note that the given equation can be simplified as $y(\ln x+2 \ln z)=2$. Define a function $F(x, y, z)=y(\ln x+2 \ln z)$. Then our surface is the level surface $F(x, y, z)=2$.
(a) The gradient of F is

$$
\nabla F=\left\langle\frac{y}{x}, \ln x+2 \ln z, \frac{2 y}{z}\right\rangle .
$$

The defining equation of the tangent plane at $(e, 2,1)$ is

$$
\nabla F(e, 2,1) \cdot\langle x-e, y-2, z-1\rangle=0
$$

After computation, we get $\frac{2}{e} x+y+4 z=8$.
(b) The normal line has a directional vector $\nabla F(e, 2,1)=\left\langle\frac{2}{e}, 1,4\right\rangle$ and it passes through $(e, 2,1)$. Thus, its defining equation is

$$
\frac{x-e}{\frac{2}{e}}=y-2=\frac{z-1}{4} .
$$

40. Letting $F(x, y, z)=4 x^{2}+4 x y-2 y^{2}+8 x-5 y-4-z$, the graph of the given equation is the the level surface $F(x, y, z)=0$. Hence, the normal vector of the tangent plane is its gradient vector $F(x, y, z)$, which is

$$
\nabla F=\langle 8 x+4 y+8,4 x-4 y-5,-1\rangle .
$$

Note that the tangent plane is horizontal if and only if both x and y coordinates of ∇F vanish. This happens when $8 x+4 y+8=4 x-4 y-5=0$. Solving the equation gives us $x=-\frac{1}{4}, y=-\frac{3}{2}$. The z-coordinate can be computed by substituting $(x, y)=\left(-\frac{1}{4},-\frac{3}{2}\right)$ into the relation $z=4 x^{2}+$ $4 x y-2 y^{2}+8 x-5 y-4$. This gives $z=-\frac{17}{4}$. Hence the desired point is $\left(-\frac{1}{4},-\frac{3}{2},-\frac{17}{4}\right)$.
50. Define $F(x, y, z)=x^{2}+4 y^{2}-z^{2}$. Let (a, b, c) be a point lying on the level surface $F(x, y, z)=1$. The gradient vector $\nabla F(a, b, c)=\langle 2 a, 8 b,-2 c\rangle$ represents the normal vector of the tangent plane at (a, b, c). Hence, the tangent plane is parallel to the plane $x+4 y-z=0$ when

$$
\langle 2 a, 8 b,-2 c\rangle=\lambda\langle 1,4,-1\rangle .
$$

Solving the equation, we get $a=b=c=\frac{\lambda}{2}$. Note that our point (a, b, c) lies on the level surface $F(x, y, z)=0$. This implies an additional relation $a^{2}+4 b^{2}-c^{2}=1$, and thus we can conclude $\lambda= \pm 1$. This means $(a, b, c)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ or $\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$.

$\S 13.8$

8. The given function can be rewritten as $f(x, y)=-(x-5)^{2}-(y-6)^{2}-3$. In this form, it is clear that $f(x, y) \leq-3$ for all (x, y). The value -3 can actually be achieved at $(x, y)=(5,6)$. Hence the absolute maximum is -3 .

On the other hand, one can compute the gradient $\nabla f=\langle-2(x-5),-2(y-6)\rangle$. Solving the equation $\nabla f=\langle 0,0\rangle$ yields the critical point $(x, y)=(5,6)$. Indeed, this point was the absolute maximum point.
20. One can compute the gradient $\nabla h=\left\langle\frac{2}{3} x\left(x^{2}+y^{2}\right)^{-\frac{2}{3}}, \frac{2}{3} y\left(x^{2}+y^{2}\right)^{-\frac{2}{3}}\right\rangle$. Recall that the critical point is either a solution of $\nabla h=\langle 0,0\rangle$, or a point where ∇h is undefined. Here the equation $\nabla h=\langle 0,0\rangle$ does not have a solution, but ∇h is undefined at $(0,0)$. Hence the critical point is $(0,0)$.

Now compute all the second partial derivatives. These are

$$
\begin{gathered}
f_{x x}=\frac{2}{3}\left(x^{2}+y^{2}\right)^{-\frac{2}{3}}-\frac{8}{3} x^{2}\left(x^{2}+y^{2}\right)^{-\frac{5}{3}}, \quad f_{y y}=\frac{2}{3}\left(x^{2}+y^{2}\right)^{-\frac{2}{3}}-\frac{8}{3} y^{2}\left(x^{2}+y^{2}\right)^{-\frac{5}{3}} \\
f_{x y}=-\frac{8}{3} x y\left(x^{2}+y^{2}\right)^{-\frac{5}{3}}
\end{gathered}
$$

These second partial derivatives are again undefined at $(0,0)$. Thus the second partials test does not apply, and the test is inconclusive.

Note that from the given form of the function $h(x, y)=\left(x^{2}+y^{2}\right)^{\frac{1}{3}}+2$, it is clear that the point $(0,0)$ yields an absolute minimum 2. This tells us that even though $(0,0)$ is a relative minimum point, it is possible that the second partials test cannot detect the answer.
34. The value $d=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}\left(x_{0}, y_{0}\right)^{2}=100$ is positive, and $f_{x x}\left(x_{0}, y_{0}\right)$ is also positive. Hence the situation describes a relative minimum point.
46. Define a new function $g(t)=\frac{2 t}{t^{2}+1}$. Then the given function f is just $f(x, y)=g(x) g(y)$. We first compute the absolute minimum and maximum of $g(t)$ for $0 \leq t \leq 1$. This is a single variable function, so one can apply various methods to determine its extrema (that we have learned in Calculus I).

One way to compute the extrema of g is the following. The function g has a derivative $g^{\prime}(t)=$
$\frac{-t^{2}+1}{\left(t^{2}+1\right)^{2}}$. Since we have a restriction $0 \leq t \leq 1$, we conclude $g^{\prime}(t) \geq 0$ and hence g is an increasing function on $[0,1]$. It follows $g(t)$ has the absolute minimum $g(0)=0$ and maximum $g(1)=1$.

Returning to the original problem, recall that $f(x, y)=g(x) g(y)$ and $0 \leq x, y \leq 1$. Since we know $0 \leq g(t) \leq 1$ when $0 \leq t \leq 1$, we can conclude $0 \leq g(x) g(y) \leq 1$. Hence, the absolute minimum of $f(x, y)$ is 0 and it occurs when $x=0$ or $y=0$. The absolute maximum of $f(x, y)$ is 1 and it occurs only when $x=y=1$.
48. The gradient of the function is

$$
\nabla f=\left\langle-2 x(y-1)^{2}(z+2)^{2},-2 x^{2}(y-1)(z+2)^{2},-2 x^{2}(y-1)^{2}(z+2)\right\rangle .
$$

To compute critical points, we need to solve the equation $\nabla f=\langle 0,0,0\rangle$. This gives us the whole locus of critical points $x=0$ or $y=1$ or $z=-2$. In fact, these are all absolute maximum points. From the form of the given function $f(x, y, z)=9-x^{2}(y-1)^{2}(z+2)^{2}$, we can clearly see $f(x, y, z) \leq 9$ and the equality holds exactly when $x=0$ or $y=1$ or $z=-2$. This was exactly the critical locus.

