Homework 3. Solutions.

12.1 Problems 8, 16, 18, 19-22, 34

8. Domain is all real numbers $t>0$.
9. Parametric Equations are

$$
\begin{aligned}
& x(t)=-4 t-3 \\
& y(t)=4 t-2 \\
& z(t)=-3 t+5
\end{aligned}
$$

Vector valued function is $r(t)=(-4 t-3) \hat{i}+(4 t-2) \hat{j}+(-3 t+5) \hat{k}$
18. $r(t) \cdot u(t)=t^{2}(t-2)$, a scalar-valued function.
19. B
20. C
21. A
22. D
34. See sketch at the end of file.

12.2 Problems 8, 18, 22, 44, 70

8. $r^{\prime}(t)=\left\langle-e^{-t}, e^{t}\right\rangle, r^{\prime}\left(t_{0}\right)=\langle-1,1\rangle, r\left(t_{0}\right)=\langle 1,1\rangle$. To obtain the graph note that $x=x(t)=$ $e^{-t}=\frac{1}{y}$, since $y=y(t)=e^{t}$. See sketch at the end of file.
9. $r^{\prime}(t)=\left\langle\frac{1}{\sqrt{1-t^{2}}}, \frac{-1}{\sqrt{1-t^{2}}}, 0\right\rangle$
10. a) $r^{\prime}(t)=\langle-8 \sin t, 3 \cos t\rangle$, b) $r^{\prime \prime}(t)=\langle-8 \cos t,-3 \sin t\rangle$, c) $r^{\prime} \cdot r^{\prime \prime}=55 \sin t \cos t$
11. $\int r(t) d t=\left\langle\tan t+C_{1}, \arctan t+C_{2}\right\rangle$
12. a) The curve is an ellipse. b) The maxima for $\left\|r^{\prime}\right\|$ occurs at $0, \pi$, with maximum value at those points equal to 3 and the minima occur at the points $\frac{\pi}{2}, \frac{3 \pi}{2}$ with value at those points equal to 2. The max/min for $\left\|r^{\prime \prime}\right\|$ occur at the same points as for $\left\|r^{\prime}\right\|$, but this time the value at the max. is 2 and value at the \min is 3 .

12.3 Problems 10, 20, 36, 38, 46

10. a) The velocity v, speed $\|v\|$ and acceleration a are given by $v=r^{\prime}(t)=\left\langle-e^{-t}, e^{t}\right\rangle$ $\|v\|=\sqrt{e^{-2 t}+e^{2 t}}, a=\left\langle e^{-t}, e^{t}\right\rangle$
b) $v(0)=\langle-1,1\rangle, a(0)=\langle 1,1\rangle$
c) See end of file for sketch.
11. a) $v(t)=r^{\prime}(t)=\left\langle\frac{1}{t}, \frac{-2}{t^{3}}, 4 t^{3}\right\rangle, a(t)=r^{\prime \prime}(t)=\left\langle\frac{-1}{t^{2}}, \frac{6}{t^{4}}, 12 t^{2}\right\rangle,\|v\|=\sqrt{\frac{1}{t^{2}}+\frac{4}{t^{6}}+16 t^{6}}$
b) $v(\sqrt{3})=\left\langle\frac{-1}{\sqrt{3}}, \frac{-2}{(\sqrt{3})^{3}}, 4(\sqrt{3})^{3}\right\rangle, a(\sqrt{3})=\left\langle\frac{-1}{3}, \frac{2}{3}, 36\right\rangle$
12. The position function for the bomb is given by

$$
r(t)=(792 \cos \theta) t \hat{i}+\left[30,000+(792 \sin \theta) t-\frac{1}{2} g t^{2}\right] \hat{j}
$$

where θ is the angle of elevation. To determine the time when the bomb should be released we first solve for t when the vertical component of $r(t)$ is identically zero, i.e. we need to solve the quadratic equation

$$
30000+(792 \sin \theta) t-\frac{1}{2} g t^{2}=0
$$

Solutions are given by

$$
t=\frac{-792 \sin \theta \pm \sqrt{792^{2} \sin \theta+2 g \cdot 30,000}}{-g}
$$

Observe that of the two solutions, only $t_{0}=\frac{-792 \sin \theta-\sqrt{792^{2} \sin \theta+2 g \cdot 30,000}}{-g}$ is positive. Now, assuming that when the bomb is released $\theta=0$, we obtain that $t_{0}=\frac{\sqrt{60000 g}}{g}=$ 61.24, (with $g=16 \mathrm{ft} / \mathrm{sec}^{2}$). We can then determine how far the target is in the horizontal direction, since

$$
x\left(t_{0}\right)=(792 \cos \theta) t_{0}=\frac{792 \sqrt{60000 g}}{g}=48502
$$

Using this we see that the angle of depression θ_{1} must be given by

$$
\tan \left(\theta_{1}\right)=\frac{30000 g}{792 \sqrt{60000 g}}=\frac{30000}{48502}=0.61
$$

Therefore the bomb should be released at the time when the angle of depression θ_{1} satisfies $\theta_{1}=\arctan \left(\frac{30000 g}{792 \sqrt{60000 g}}\right)=\arctan (0.61)=32$ degrees. (See end of file for a sketch)

To determine the speed at the time of impact, note that

$$
v(t)=\langle 792 \cos \theta, 792 \sin \theta-g t\rangle
$$

so $\|v\|=\sqrt{792^{2}+g^{2} t^{2}}$. Since the bomb hits the target at time $t_{0}=\frac{\sqrt{60000 g}}{g}$, we get that the speed at the time of impact is

$$
\left\|v\left(t_{0}\right)\right\|=\sqrt{792^{2}+60000 g}=1259.9 \mathrm{ft} / \mathrm{sec}
$$

38. The horizontal component of the position vector is given by $x(t)=\left(v_{0} \cos \theta\right) t$. We are given that $\theta=12$ degrees and we need to determine v_{0} assuming that when $y(t)=0, x(t)=200$. Thus, we first determine the time at which $y(t)=0$, this means $v_{0} \sin 12 t-\frac{1}{2} g t^{2}=t\left(v_{0} \sin (12)-\right.$ $\left.\frac{1}{2} g t\right)$, so $t=\frac{2 v_{0} \sin 12}{g}$, and then solve for v_{0} in the equation

$$
v_{0} \cos (12) \frac{2 v_{0} \sin 12}{g}=200
$$

which gives

$$
v_{0}=\sqrt{\frac{200 g}{\sin (24)}}
$$

46. If $r(t)=b[\omega t-\sin (\omega t)] \hat{i}+b[1-\cos (\omega t)] \hat{j}$, then $r^{\prime}(t)=b\langle\omega-\omega \cos (\omega t), \omega \sin (\omega t)\rangle$, and $\|v\|=\left\|r^{\prime}\right\|=(b \sqrt{2} \omega) \sqrt{1-\cos (\omega t)}$. The maximum for $\|v\|$ then occurs when $t=\frac{\pi}{\omega}$ (at which point $\|v\|=2 b \omega$). Assuming $b=1, \omega=60$, we see that the speed of a point on the circumference of a tire is twice as much as that of the car.

SKETCHES
(34.)

(8.)

(\#36)

