Homework 1. Solutions.

11.1: Problems 8, 14, 36, 44, 82

8. The vector $\vec{u}=\langle 15,-3\rangle$ and $\vec{v}=\langle 15,-3\rangle$. The two vectors are equal since their first and second components coincide.
9. a). See end of file
b). Component form $\vec{v}=\langle-10,0\rangle$
c). Linear combination $\vec{v}=-10 \hat{i}+0 \hat{j}$
d.) See end of file.
10. $\|\vec{v}\|=5 \sqrt{10}$ so $\vec{u}=\left\langle\frac{-1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right\rangle$. Norm of $\vec{u}=\frac{\sqrt{1+9}}{\sqrt{10}}=1$
11. See end of file for the graphs. $\|u+v\|=\|\langle-2,0\rangle\|=2 \leq \sqrt{13}+\sqrt{5}=\|\vec{u}\|+\|\vec{v}\|$

82 Denote by F_{1}, F_{2} the tension on each rope. Since the resultant force is vertical,

$$
100=\|F\|=\left\|F_{1}\right\| \cos 30+\left\|F_{2}\right\| \cos (20)
$$

Moreover, the horizontal components must satisfy

$$
\left\|F_{1}\right\| \sin (20)=\left\|F_{2}\right\| \sin (30)
$$

Solving the linear system for $\left\|F_{1}\right\|,\left\|F_{2}\right\|$, we get

$$
\left\|F_{1}\right\|=44.64 l b,\left\|F_{2}\right\|=65.27 l b
$$

The vector components of each force are thus

$$
\begin{aligned}
& F_{1}=\langle 65.27 \sin (20), 65.27 \cos (20)\rangle \\
& F_{2}=\langle 44.64 \sin (30), 44.64 \cos (30)\rangle
\end{aligned}
$$

11.2: Problems 28, 32, 34, 46, 98

$28 d=\sqrt{4+1+25}=\sqrt{30}$
32 If \vec{u} is the vector with initial point $A=(4,-1,-1)$ and terminal point $B=(2,0,-4)$ and \vec{v} is the vector with initial point $A=(4,-1,-1)$ and terminal point $C=(3,5,-1)$, then the lengths of the sides are $|A B|=\|\vec{u}\|=\sqrt{14},|B C|=\|\vec{v}\|=\sqrt{35},|A C|=\|\vec{v}+\vec{u}\|=\sqrt{37}$. The triangle is not isosceles because no two sides have the same length. Now, if the triangle was right, then Pythagoras theorem would imply that $|A B|^{2}+|B C|^{2}=|A C|^{2}$, (observe that necessarily the right angle would be opposite the side $A C$, which is the longest), but this is impossible since $35+14 \neq 37$

34 Midpoint is given by $\left(\frac{7-5}{2}, \frac{2-2}{2}, \frac{2-3}{2}\right)=\left(1,0,-\frac{1}{2}\right)$

$$
\begin{aligned}
4\left(x^{2}-6 x+9\right)-4 \cdot 9+4\left(y^{2}-y+\frac{1}{4}\right)-1+4\left(z^{2}+2 z+1\right)-4-23 & =0 \\
\left(x^{2}-6 x+9\right)+\left(y^{2}-y+\frac{1}{4}\right)+\left(z^{2}+2 z+1\right) & =\frac{64}{4} \\
(x-3)^{2}+\left(y-\frac{1}{2}\right)^{2}+(z-1)^{2} & =8^{2}
\end{aligned}
$$

Center of the sphere is $\left(3, \frac{1}{2},-1\right)$ and radius is 8 .
98 Component form is $F=\langle 75,50,-100\rangle$

11.3: Problems 8, 14, 24, 30, 58

8 a) $u \cdot v=10, u \cdot u=50,\|v\|^{2}=6,(u \cdot v) v=\langle-10,20,10\rangle, u \cdot(3 v)=3(u \cdot v)=30$
14 The angle is $\frac{3 \pi}{4}-\frac{\pi}{6}=\frac{7 \pi}{12}$ or 105 degrees. One can see this without using the formula (see Sketch at the end of the file), or by using sum-to-product trig. identities: since each vector has unit length,

$$
\cos (\theta)=u \cdot v=\cos \left(\frac{\pi}{6}\right) \cos \left(\frac{3 \pi}{4}\right)+\sin \left(\frac{\pi}{6}\right) \sin \left(\frac{3 \pi}{4}\right)=\cos \left(\frac{3 \pi}{4}-\frac{\pi}{6}\right)
$$

24 They're orthogonal since $u \cdot v=-2 \cdot 2+3 \cdot 1+(-1) \cdot(-1)=0$
30 As in $11.2(32),|A B|=\|u\|=\|(-3,12,5)\|=\sqrt{178},|B C|=\|v\|=\|(5,1,-9)\|=\sqrt{107}$, $\|A C\|=\|v+u\|=\sqrt{189}$. Since $u \cdot v=-48<0$, triangle is obtuse.

58 The force exerted due to gravity is $F=-5400 \hat{j}$. The force required to keep the vehicle from rolling down is

$$
F_{1}=\operatorname{proj}_{v} F
$$

where $v=\cos (18) \hat{i}+\sin (18) \hat{j}$, which has unit length. Hence

$$
F_{1}=(F \cdot v) v=(-5400 \cdot \sin (18))(\cos (18) \hat{i}+\sin (18) \hat{j})
$$

The force perpendicular to the hill is

$$
F_{2}=F-F_{1}=5400 \sin (18) \cos (18) \hat{i}+\left(-5400-5400 \sin ^{2}(18)\right) \hat{j}
$$

$14 a)$

$14 d)$

44)

14)

between \vec{u}, \vec{v} is the difference.

