Name: Dror Varolin

Math 203-Fall 2018 Solutions to First Examination

1. Consider the line L given by the vector equation $\mathbf{r}(t)=(4+2 t, 1+t, 3-2 t)$.
(a) Find a unit vector \mathbf{v} parallel to this line.

Answer: There are two answers, but they are all non-zero scalar multiples of the vector

$$
\mathbf{r}^{\prime}(t)=\langle 2,1,-2\rangle .
$$

Since a unit vector was asked for, we must divide $\mathbf{r}^{\prime}(t)$ or its negative by the norm $\left\|\mathbf{r}^{\prime}(t)\right\|=3$. Therefore the answer is

$$
\mathbf{v}=\frac{1}{3}\langle 2,1,-2\rangle \quad \text { or } \quad-\frac{1}{3}\langle 2,1,-2\rangle .
$$

(b) Find the equation for the plane perpendicular to \mathbf{v} and passing through the point $(-1,2,0)$.
(10pts)
Answer: A point on this plane with coordinates (x, y, z) must satisfy

$$
\langle x+1, y-2, z\rangle \cdot \mathbf{v}=0, \quad \text { which is the same as } \quad 2(x+1)+y-2-2 z=0 .
$$

(c) Find the distance from the origin to the line L.
(10pts)
Answer: In the picture below, take Q to be the origin ($0,0,0$). The distance is obtained by choosing any point P on the line, finding the vector $\overrightarrow{P Q}$, and projecting it onto a unit vector parallel to the line:

The quantity D is the picture is $\|(P Q) \times \mathbf{u}\|$, the magnitude of the cross product.
Here the unit vector is $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}= \pm \frac{1}{3}\langle 2,-1,-2\rangle$. We will choose $P=\mathbf{r}(-1)=(2,0,5)$, so that $P Q=\langle-2,0,-5\rangle$. (This choice makes one of the coordinates 0 , and keeps the other components as integers, which makes the cross product easier to compute. But you can make any other choice; the outcome will be the same.) Then we have

$$
P Q \times \mathbf{u}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 0 & -5 \\
\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3}
\end{array}\right|=\left\langle\frac{-5}{3},-\frac{14}{3}, \frac{2}{3}\right\rangle,
$$

and therefore $\|P Q \times \mathbf{u}\|=\frac{1}{3} \sqrt{25+196+4}=\frac{\sqrt{225}}{3}=5$.
2. Consider the curve

$$
\mathbf{r}(t)=\left\langle 4 \sin \left(t^{2}-\pi t\right), 2 e^{4(t-\pi)}\right\rangle
$$

(a) Find the unit tangent vector $\mathbf{T}(2 \pi)$ at the point $\mathbf{r}(\pi)$.
(10pts)
(A typo was corrected in the room at the exam. We seek $\mathbf{T}(\pi)$, not $\mathbf{T}(2 \pi)$)
Answer: $\mathbf{r}^{\prime}(t)=\left\langle 4(2 t-\pi) \cos \left(t^{2}-\pi t\right), 8 e^{4(t-\pi)}\right\rangle$, so $\mathbf{r}^{\prime}(\pi)=\langle 4 \pi, 8\rangle$, and therefore

$$
\mathbf{T}(\pi)=\frac{\mathbf{r}^{\prime}(\pi)}{\left\|\mathbf{r}^{\prime}(\pi)\right\|}=\frac{1}{\sqrt{\pi^{2}+4}}\langle\pi, 2\rangle .
$$

(b) Find the unit normal vector $\mathbf{N}(\pi)$ at the point $\mathbf{r}(\pi)$.

Answer: Since $\mathbf{N}(t) \perp \mathbf{T}(t)$ and we are in two dimensions, there are only two possibilities for $\mathbf{N}(\pi)$:

$$
\mathbf{N}(\pi)=\frac{1}{\sqrt{\pi^{2}+4}}\langle-2, \pi\rangle \quad \text { or } \quad \mathbf{N}(\pi)=\frac{1}{\sqrt{\pi^{2}+4}}\langle 2,-\pi\rangle .
$$

To decide which of these is the correct answer, we have to see which way the curve bends. First, $\mathbf{r}(\pi)=\langle 0,2\rangle$. If we take t very close to π but slightly larger than π, then both components of $\mathbf{r}(t)$ increase, but the first component increases much slower than the second component. Therefore the curve is concave up,

so the unit normal points northwest: $\mathbf{N}(\pi)=\frac{1}{\sqrt{\pi^{2}+4}}\langle-2, \pi\rangle$.
SECOND SOLUTION: We know that the acceleration vector $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$ at any time t only has components in the directions of $\mathbf{T}(t)$ and $\mathbf{N}(t)$. (Since the curve lies in the plane, this fact is obvious, but this solution would work even if the curve were a space curve.) Since $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are perpendicular, if we write $\mathbf{a}(t)=f(t) \mathbf{T}(t)+g(t) \mathbf{N}(t)$ then

$$
f(t)=\mathbf{a}(t) \cdot \mathbf{T}(t)
$$

and therefore $\mathbf{N}(\mathbf{t})$ is parallel to the vector

$$
\mathbf{a}(t)-f(t) \mathbf{T}(t)
$$

It is easy to calculate the acceleration:

$$
\begin{aligned}
\mathbf{a}(t) & =\frac{d}{d t} \mathbf{r}^{\prime}(t)=\frac{d}{d t}\left\langle 4(2 t-\pi) \cos \left(t^{2}-\pi t\right), 8 e^{4(t-\pi)}\right\rangle \\
& =\left\langle-4(2 t-\pi)^{2} \sin \left(t^{2}-\pi t\right)+8 \cos \left(t^{2}-\pi t\right), 32 e^{4(t-\pi)}\right\rangle
\end{aligned}
$$

Thus $\mathbf{a}(\pi)=\langle 8,32\rangle$. Since $\mathbf{T}(\pi)=\frac{\langle\pi, 2\rangle}{\sqrt{\pi^{2}+4}}, f(\pi)=\frac{8 \pi+64}{\sqrt{\pi^{2}+4}}$. Therefore

$$
\begin{aligned}
\mathbf{a}(\pi)-f(\pi) \mathbf{T}(\pi) & =\langle 8,32\rangle-\frac{8 \pi+64}{\sqrt{\pi^{2}+4}} \frac{\langle\pi, 2\rangle}{\sqrt{\pi^{2}+4}} \\
& =\frac{1}{\pi^{2}+4}\left\langle 8\left(\pi^{2}+4\right)-(8 \pi+64) \pi, 32\left(\pi^{2}+4\right)-2(8 \pi+64)\right\rangle \\
& =\frac{1}{\pi^{2}+4}\left\langle 32-64 \pi, 32 \pi^{2}-16 \pi\right\rangle=\frac{32 \pi-16}{\pi^{2}+4}\langle-2, \pi\rangle .
\end{aligned}
$$

Thus $\mathbf{N}(\pi)$ is the unit vector in the direction of $\langle-2, \pi\rangle$, so

$$
\mathbf{N}(\pi)=\frac{1}{\sqrt{\pi^{2}+4}}\langle-2, \pi\rangle .
$$

(You get 10/15 if you choose the other normal vector.)
Alternatively, you could try to compute $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}$ and $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}$, but this is a much longer computation, and is very likely to result in errors. Nevertheless, if you computed it this way, and correctly, then you will get full points. Partial credit will depend a lot on your work.
3. Find the length of the curve

$$
\mathbf{R}(t)=\left(2 e^{t}, 2 e^{-t}, 2 \sqrt{2} t\right), \quad 0 \leq t \leq 3
$$

Hint: $\left(a+\frac{1}{a}\right)^{2}=$?
Answer: First, the speed is

$$
\left\|\mathbf{R}^{\prime}(t)\right\|=\left\|\left\langle 2 e^{t},-2 e^{-t}, 2 \sqrt{2}\right\rangle\right\|=2 \sqrt{e^{2 t}+e^{-2 t}+2} \stackrel{\text { by the hint }}{=} 2 \sqrt{\left(e^{t}+e^{-t}\right)^{2}}=2\left(e^{t}+e^{-t}\right)
$$

The length is the integral of speed with respect to time:

$$
\ell=\int_{0}^{3}\left\|\mathbf{R}^{\prime}(t)\right\| d t=\int_{0}^{3} 2\left(e^{t}+e^{-t}\right) d t=2\left(e^{t}-e^{-t}\right)_{t=0}^{t=3}=2\left(e^{3}-e^{-3}\right)
$$

4. For the function

$$
f(x, y, z)=z^{2} \sin \left(\frac{x y}{z^{2}}\right)
$$

calculate $\frac{\partial f}{\partial y}, \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right)$ and $\frac{\partial^{2} f}{\partial x^{2}}$.
Answer: First,

$$
\frac{\partial f}{\partial y}=z^{2} \cos \left(\frac{x y}{z^{2}}\right) \cdot \frac{x}{z^{2}}=x \cos \left(\frac{x y}{z^{2}}\right) .
$$

Next, Clairaut's Theorem says that mixed partial derivatives can be taken in any order. So to compute $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right)$ we can just compute the partial derivative of $\frac{\partial f}{\partial y}$ with respect to z. We get

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial z}\right)=\frac{\partial}{\partial z}\left(x \cos \left(\frac{x y}{z^{2}}\right)\right)=\frac{2 x^{2} y}{z^{3}} \sin \left(\frac{x y}{z^{2}}\right) .
$$

The last one, $\frac{\partial^{2} f}{\partial x^{2}}$, is just computed directly:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(y \cos \left(\frac{x y}{z^{2}}\right)\right)=-\frac{y^{2}}{z^{2}} \sin \left(\frac{x y}{z^{2}}\right) .
$$

