Math 203-Fall 2018 Solutions to Second Examination

1. Consider the function $z=f(x, y)$ is defined implicitly by the equation

$$
z^{2}(1+\sin (x y))+e^{2 z-y}=2
$$

and the condition $f(0,2)=1$. Compute $\frac{\partial f}{\partial x}(0,2)$.
Solution: Differentiating the equation with respect to x yields

$$
2 z z_{x}(1+\sin (x y))+z^{2} y \cos (x y)+2 z_{x} e^{2 z-y}=0
$$

Plugging in $(x, y, z)=(0,2,1)$ yields $2 z_{x}+2+2 z_{x}=0$, or

$$
z_{x}(0,2)=-\frac{1}{2}
$$

Second, almost equivalent solution: One could use the formula

$$
z_{x}=\frac{-F_{x}}{F_{z}}
$$

where $F(x, y, z)=z^{2}(1+\sin (x y))+e^{2 z-y}$. Then

$$
F_{x}=y z^{2} \cos (x y) \quad \text { and } \quad F_{z}=2 z(1+\sin (x y))+2 e^{2 z-y}
$$

Plugging in $(x, y, z)=(0,2,1)$ yields $F_{x}(0,2,1)=2$ and $F_{z}(0,2,1)=4$, so again

$$
z_{x}(0,2)=-\frac{1}{2} .
$$

2. Consider the function

$$
f(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

and the unit vector

$$
\mathbf{u}_{o}=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle .
$$

(a) Calculate the directional derivative $D_{\mathbf{u}_{o}} f(x, y)$ of f at the point (x, y) along the direction \mathbf{u}_{o}.
(b) Find the maximum value of $D_{\mathbf{u}_{o}} f(x, y)$ among all points (x, y) in the plane, and the point where this maximum occurs.

Solution: (a)

$$
D_{\mathbf{u}_{\mathbf{o}}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}_{\mathbf{o}}=\left\langle-2 x e^{-\left(x^{2}+y^{2}\right)},-2 y e^{-\left(x^{2}+y^{y}\right)}\right\rangle \cdot\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\sqrt{2}(x-y) e^{-\left(x^{2}+y^{2}\right)}
$$

(b) We compute that

$$
\nabla\left(D_{\mathbf{u}_{\mathbf{o}}} f(x, y)\right)=\sqrt{2} e^{-\left(x^{2}+y^{2}\right)}\langle 1-2 x(x-y),-1-2 y(x-y)\rangle
$$

Therefore the critical points are simultaneous solutions of the two equations

$$
2 x(x-y)=1 \quad \text { and } \quad 2 y(x-y)=-1
$$

These two equations imply that for any critical point $(x, y), x-y \neq 0$. By taking the quotient of the two equations, we find that if (x, y) is a critical point then $y=-x$. Substituting this relation into the first equation yields $4 x^{2}=1$, so $x= \pm \frac{1}{2}$, and together with the relation $y=-x$ we see that the critical points are $\left(\frac{1}{2},-\frac{1}{2}\right)$ and $\left(-\frac{1}{2}, \frac{1}{2}\right)$. Since

$$
D_{\mathbf{u}_{\mathbf{o}}} f\left(\frac{1}{2},-\frac{1}{2}\right)=\sqrt{2} e^{-1 / 2} \quad \text { and } \quad D_{\mathbf{u}_{\mathbf{o}}} f\left(-\frac{1}{2}, \frac{1}{2}\right)=-\sqrt{2} e^{-1 / 2}
$$

we see that the maximum value of $\sqrt{2 / e}$ occurs at the point $\left(\frac{1}{2},-\frac{1}{2}\right)$.
3. Find the point $\left(x_{o}, y_{o}\right)$ whose y-coordinate has the largest possible value among all points on (x, y) lying on the curve

$$
(2 x-y)^{2}+2(x+3 y)^{2}=3
$$

Solution: We are trying to maximize the function $f(x, y)=y$ subject to the constraint $g(x, y)=(2 x-y)^{2}+2(x+3 y)^{2}=3$. The Lagrange method says that the critical points of this constrained problem occur at the points where the gradient of f is proportional to the gradient of g, i.e., we have the equations

$$
\langle 0,1\rangle=\lambda\langle 4(2 x-y)+4(x+3 y), 2(y-2 x)+12(x+3 y)\rangle \quad \text { and } \quad(2 x-y)^{2}+2(x+3 y)^{2}=3 .
$$

Since the vector $\langle 0,1\rangle$ is non-zero, λ cannot equal 0 , and therefore

$$
0=4(2 x-y)+4(x+3 y)=12 x+8 y=\left(y+\frac{3}{2} x\right)
$$

Plugging this equation into the constraint yields

$$
3=(2 x-y)^{2}+2(x+3 y)^{2}=\left(\frac{7}{2} x\right)^{2}+2\left(-\frac{7}{2} x\right)^{2}=3\left(\frac{7}{2} x\right)^{2},
$$

so that $x= \pm \frac{2}{7}$, and therefore $y=\mp \frac{3}{7}$. Since we are trying to maximize the y value, the point with highest y coordinate is

$$
\left(-\frac{2}{7}, \frac{3}{7}\right)
$$

4. Compute the iterated integral

$$
\int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} \int_{0}^{\sqrt{8-x^{2}-y^{2}}} \frac{2 \sin \left(x^{2}+y^{2}+z^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}} d z d x d y
$$

Solution: The smart move here is to change to spherical coordinates. The region of integration

$$
\left\{(x, y, z) ; 0 \leq y \leq 2, y \leq x \leq \sqrt{8-y^{2}}, 0 \leq z \leq \sqrt{8-x^{2}-y^{2}}\right\}
$$

is the portion of the ball of radius $2 \sqrt{2}$ defined by the spherical coordinates

$$
\left\{(\rho, \phi, \theta) ; 0 \leq \rho \leq 2 \sqrt{2}, 0 \leq \phi \leq \frac{\pi}{2}, 0 \leq \theta \leq \frac{\pi}{4}\right\}
$$

Therefore

$$
\begin{aligned}
& \int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} \int_{0}^{\sqrt{8-x^{2}-y^{2}}} \frac{2 \sin \left(x^{2}+y^{2}+z^{2}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}} d z d x d y \\
= & \int_{0}^{\pi / 4} \int_{0}^{\pi / 2} \int_{0}^{2 \sqrt{2}} \frac{2 \sin \left(\rho^{2}\right)}{\rho} \rho^{2} \sin \phi d \rho d \phi d \theta \\
= & \left(\int_{0}^{\pi / 4} d \theta\right)\left(\int_{0}^{\pi / 2} \sin \phi d \phi\right)\left(\int_{0}^{2 \sqrt{2}} \sin \left(\rho^{2}\right) 2 \rho d \rho\right) \\
= & \frac{\pi}{4}(\cos (0)-\cos (\pi / 2))(\cos (0)-\cos (8)) \\
= & \frac{\pi}{4}(1-\cos 8) .
\end{aligned}
$$

