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1 Introduction
In his paper [A], E. Andersén proved, among several other interesting results, that every holomor-
phic automorphism of Cn whose Jacobi determinant is identically 1 can be approximated locally
uniformly by finite compositions of so-called shears. Later [AL] E. Andersén and L. Lempert
proved that every holomorphic automorphism of Cn could be approximated locally uniformly by
finite compositions of overshears. This work was elaborated on by F. Forstnerič and J.P. Rosay, and
used by them to study AutCn equivalence [FR]. Many other results concerning automorphisms of
Cn proceeded to appear, and the list is growing. (A large collection of these results may be found
in the survey [F3].)

One of the major ingredients common to all of the results alluded to above is the use of the
following theorem, due to Andersén and Lempert ([A, AL])1:

Every holomorphic vector field on Cn can be approximated locally uniformly by finite sums of
complete (in fact, generalized shear) holomorphic vector fields. If the vector field has identically
vanishing holomorphic divergence, then it can be approximated locally uniformly by finite sums of
complete divergence free (in fact, shear) holomorphic vector fields.

In an attempt to generalize the recent work on automorphisms from Cn to other complex man-
ifolds, the author was lead to the following definitions:

A complex manifold M is said to have the density property if every holomorphic vector field on M
can be approximated locally uniformly by Lie combinations2of complete vector fields3on M .

It is also natural to study so called ‘geometric structures’, i.e., Lie subalgebras of the Lie algebra
XO(M) of all holomorphic vector fields on M .

A geometric structure g on a complex manifoldM is said to have the density property if every holo-
morphic vector field in g can be approximated locally uniformly by Lie combinations of complete
vector fields in g.

Clearly M has the density property if and only if XO(M) does. Another important special case
occurs when we specify on our complex manifold M a holomorphic volume form ω. Denote by

1The theorem does not appear in this form in [A, AL], but is phrased in this way in [FR], lemma 1.3. The analogous
theorems in [A, AL] are [A], theorem 5.1 and [AL] proposition 3.9.

2see (2) below.
3see section 2.3



X ω
O(M) the Lie algebra of all holomorphic vector fields X on M with divωX = 0 (see section

2.2).

If the geometric structure X ω
O(M) has the density property, we say that (M,ω) has the volume

density property.

We remark (see section 4) that for a complex Lie group G there is a natural choice of holo-
morphic volume elements, namely left (or right) invariant ones, and that the algebra X ω

O(G) is
independent of the choice of left invariant ω. We can thus refer to a complex Lie group as having
the volume density property, omitting reference to the left invariant holomorphic volume element
in question. We can now state our

MAIN RESULTS:

I. 1. If M and N are Stein manifolds with the density property then so is M ×N .

2. If a Stein manifold M has the density property, then so do M × C and M × C∗.
3. If (M,ω) is a Stein Manifold with holomorphic volume element such that (M ×C, ω ∧
dz) has the volume density property, then M × C has the density property.

II. 1. For any complex Lie group G, G× C has the volume density property.

2. If, moreover, G is Stein, G× C has the density property.

3. If G is a complex Lie group having the volume density property, then G × C∗ has the
volume density property. In particular, (C∗)k has the volume density property for all
k ∈ N.

III. 1. If n > k ≥ 1, then the geometric structure gn,k0 , consisting of holomorphic vector fields
on Cn = Ck × Cn−k which vanish on Ck × {0}, has the density property.

2. If n > k ≥ 2, then the geometric structure gn,kT , consisting of holomorphic vector fields
on Cn = Ck × Cn−k which are tangent to Ck × {0}, has the density property.

Remark: Regarding the results III above, an observation about some results in [BF1, F2] gives the
following negative result:

For n ≥ 2 there exist proper holomorphic embeddings j : Cn−1 ↪→ Cn such that the geometric
structures gT (j) (resp. g0(j)), consisting of holomorphic vector fields which are tangent to (resp.
vanish on) j(Cn−1), do not have the density property.

The basic intention of the definition of the density property is to isolate those complex mani-
folds for which the gap between differential topology and holomorphic geometry is considerably
narrowed (that is to say, where the holomorphic geometry is somewhat flabby). The idea is that
if for example a Stein manifold has the density property, then its group of holomorphic automor-
phisms is “very large”. (The passage from the infinitesimal regime of vector fields to the global
regime of automorphisms is provided by the theory of ordinary differential equations. This is
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explained more precisely in section 2.3.) In contrast, the reader should compare our ideas with
those discussed in the books of S. Kobayashi, [KOB1, KOB2]. Thus the density property for Stein
manifolds should be thought of as the opposite extreme of (Kobayashi) hyperbolicity, of finite type
G-structures, or of elliptic structures on compact manifolds, etc.

In some cases, the fact that a complex manifold or a geometric structure has the density property
gives little information. For example, when the manifold is compact the density property holds
trivially, but there are relatively few holomorphic vector fields [KOB1]. However, if M is a Stein
manifold, then XO(M) is an infinite dimensional complex vector space. Since complete vector
fields on M are very sparse [BF2, F4], if the geometric structure in question is sufficiently large
(e.g., g = XO(M) or, if dimCM ≥ 2, g = X ω

O(M)), the density property for g may be useful in
the construction of various global objects.

A well known object of study, introduced by S. Chern, is that of G-structure. A G-structure
on a manifold M is a subbundle P of the principle bundle L(M) of frames of M , with structure
group G. Some of the geometric structures which we study arise as infinitesimal automorphisms
of G-structures, but this is not the case, for example, with the structures gT and g0 of section 5.
Geometric structures in our sense represent more the geometry of the group of automorphisms in
question than that of the manifold.

Finally, it should be emphasized that the understanding of the density property at this point
is very poor; all we have is a collection of examples and applications. Little is known about
the relationship between the density property and other, more accessible properties of complex
manifolds. (For the few known facts, see [V].)

Before proceeding, we should clarify matters regarding our notation.

(1) For us, holomorphic vector fields on a complex manifold M are holomorphic sections of the
bundle T 1,0M , and we denote the set of holomorphic vector fields by XO(M). However, we im-
plicitly identify T 1,0M with TM . (T 1,0M 3 X 7→ 2Re(X) ∈ TM .) This presents no difficulties,
since we restrict our attention to holomorphic vector fields. See section 2 for the definitions and
the Lie algebra structure of XO(M).

(2) A Lie combination of elements of a subset S of a Lie algebra a is an element of the Lie
subalgebra of a generated by S. That is to say, a Lie combination of elements of a subset S is an
element of a which can be written as a finite sum of terms of the form

[[...[[a1, a2], a3], ..., an−1], an],

with a1, ..., an ∈ S.

(3) The local flow of a holomorphic vector field X on a complex manifold M is the unique local
1-parameter group or pseudogroup of biholomorphisms {ϕt} on M which represents the “set of
local solutions” of the O.D.E. (in a local coordinate chart U ⊆M )

d

dt
ϕt(z) = X ◦ ϕt(z), ϕ0(z) = z (z ∈ U).

3



This local flow satisfies the local group law

ϕs ◦ ϕt(z) = ϕs+t(z)

wherever and whenever both sides make sense. (If the statement makes sense for all s, t ∈ R
and z ∈ M , we say X is R-complete; see also section 2.3) This group law is a consequence, via
the uniqueness theorem for solutions of O.D.E., of the fact that vector fields do not depend on
time ( i.e., X defines an autonomous system, and so the “physical laws” which X represents are
“symmetric” with respect to time.)

(4) A time dependent vector field is a special one parameter family of vector fields {Xt} ⊆ XO(M).
The parameter t, called time, lies in (some subset of) R, and it is implicitly understood that the
solution (also called “time dependent flow” or “evolution operator”) of the O.D.E. associated to
{Xt} has the same time parameter t. In particular, the solutions depend on the initial time. We
denote these local one parameter families by {ϕts}. Precisely, we have (locally)

d

dt
ϕts(z) = Xt ◦ ϕts(z), ϕss(z) = z, (z ∈ U).

The local group law of the autonomous system is replaced by the determinacy law

ϕts(z) = ϕtr ◦ ϕrs(z)

wherever and whenever this makes sense.

(5) We think of T as the “tangent functor” (see [Hi]), and so for a holomorphic map f : M → N
we denote by Tf : TM → TN the map which, in locally trivial coordinates, is given by

Tf(x, v) = (f(x), f ′(x)v)

We prefer this notation to the more common notations df and f∗, using the former for the linear
manifold Cn, and reserving the latter only for diffeomorphisms/biholomorphisms, when pushing
forward a vector field: for a vector field X , f∗X is the vector field given by

(f∗X)(x) := Tf(f−1(x))X(f−1(x)).

In particular, if the local flow of X is ϕt, then that of f∗X is f ◦ ϕt ◦ f−1.

The organization of the paper is as follows:

In section 2 we describe the ideas in complex geometry and ordinary differential equations
(dynamical systems) which motivate the definition of the density property, and are useful in appli-
cations. The status of this section as it pertains to this note is motivational. In section 3 we define
the density property and discuss its relation to automorphism groups on Stein manifolds. We then
prove some general results about the density property, namely its behaviour with respect to Carte-
sian products of complex manifolds. In section 4 we prove that various complex Lie groups have
the density property and the volume density property. In section 5 we discuss relative geometric
structures, proving both positive and negative results regarding the density property.
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2 Holomorphic Vector Fields
In this section we introduce the basic notions needed from complex geometry and the theory of
ordinary differential equations (O.D.E.).

2.1 Basic Definitions
It is well known that there are two (R-isomorphic) representations of the holomorphic tangent
spaces of a complex manifold M of C-dimension n. To recall, one begins with the real tangent
space TzM , and obtains a complexified tangent space TC

z M := TzM ⊗RC. The complex structure
on M then gives rise to a (holomorphically well defined, or integrable) splitting

TC
z M
∼= T 1,0

z M ⊕ T 0,1
z M,

where T 1,0
z M := span{ ∂

∂zj
} and T 0,1

z M := span{ ∂
∂zj
}. Writing πz : TC

z M → T 1,0
z M for the

projection and jz : TzM ↪→ TC
z M for the injection, it is then easy to see that ϕz := πz ◦ jz is a real

vector space isomorphism for each z ∈ M . (More details can be found in [GH].) Consequently,
we obtain a map ϕ which takes sections of TM (i.e., the usual vector fields) to sections of T 1,0M .
Precisely, ϕ(X)(z) := ϕzX(z), and it is easily verified that ϕ−1Z = 2ReZ. One also defines an
almost complex structure J on TM by Jz := (ϕz)

−1
√
−1ϕz.

The sections of TM and those of T 1,0M both form Lie algebras when endowed with their
respective commutator brackets. (The commutator bracket on T 1,0M is the one inherited from
TCM , which itself is the complexification of the commutator bracket on TM .) When restricted to
so called holomorphic vector fields, ϕ is a Lie algebra isomorphism.

More precisely, the holomorphic vector fields, which we denote by XO(M), are those sections
of TM which are mapped by ϕ to holomorphic sections of T 1,0M . It is an immediate consequence
of the Cauchy-Riemann equations that for any vector field X on M and any holomorphic function
f on M , ϕ(X)f = Xf . Hence an alternate definition of holomorphic vector field is that as a
derivation, it maps O(M) to O(M). This is now easily used to show that ϕ is in fact a Lie algebra
isomorphism from XO(M) to the holomorphic sections of T 1,0M . Note, in particular, that every
holomorphic vector field X commutes with JX .

2.2 The Invariant Notion of Divergence
Let M be a complex manifold of complex dimension n, and let ω be a nonvanishing holomorphic
(n, 0)-form, i.e., a holomorphic volume element. Let X ∈ XO(M), and let ϕt be the local flow of
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X (see the introduction). Then we can define divωX to be the unique holomorphic function on M
which satisfies

(divωX)ω := (ϕ−t)∗
d

dt
(ϕt)∗ω = LXω.

We recall H. Cartan’s formula for differential forms α [AM]:

LXα = Xcdα + d(Xcα),

where for a k-form β, Xcβ is the (k − 1)-form defined by

(Xcβ)p(v1, ..., vk−1) := βp(X(p), v1, ..., vk−1), v1, ..., vk−1 ∈ TpM.

Using the fact that ω is closed, we obtain

(divωX)ω = d(Xcω).

This formula makes sense even ifX is time-dependent. Moreover, it is known (see [AM], Theorem
2.2.24) that if Xt is a time dependent vector field with evolution operator ϕts, then the formula

((ϕts)
−1)∗

d

dt
(ϕts)

∗ω = LXtω

holds. Consequently we obtain

Proposition 2.1. LetXt be a time-dependent vector field with evolution operatorϕts. Then (ϕts)
∗ω =

ω if and only if divωXt ≡ 0.

The reader can easily verify that when X ∈ O(C) and ω = dz,

divω

(
X
∂

∂z

)
=
∂X

∂z
,

while when X ∈ O(C∗) and ω = dz
z

,

divω

(
X(z) · z ∂

∂z

)
= z

∂X

∂z
.

More generally4 if G is a complex Lie group, {V1, ..., Vn} (n = dimCG) is a basis of left invariant
vector fields on G, and ωG is the unique left invariant holomorphic volume element on G such that
ωG(V1, ..., Vn) ≡ 1, then for

X =
∑
j

XjVj ∈ XO(G) (Xj ∈ O(G))

we have
divωG

X =
∑
j

Vj(Xj).

A result which will be very useful in the sequel is
4See section 4.
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Lemma 2.2. divω([X, Y ]) = XdivωY − Y divωX.

Proof: Recall that L[X,Y ] = LXLY − LYLX . We have

(divω[X, Y ])ω = L[X,Y ]ω

= LXLY ω − LYLXω
= LX((divωY )ω)− LY ((divωX)ω)

= (XdivωY )ω + (divωY )LXω − (Y divωX)ω + (divωX)LY ω

= (XdivωY − Y divωX)ω + (divωXdivωY − divωY divωX)ω

= (XdivωY − Y divωX)ω,

as desired. �

Finally, let us point out that if (M,ω) and (N, θ) are complex manifolds with holomorphic
volume elements, then so is (M × N, (πM)∗ω ∧ (πN)∗θ), where πM : M × N → M and πN :
M × N → N are the usual projections. It is easy to verify that for X = (U, V ) ∈ XO(M × N)
one has (writing ω ∧ θ for (πM)∗ω ∧ (πN)∗θ)

divω∧θX = divωU + divθV.

2.3 Elementary Ideas From O.D.E.
In this section we recall some results from the theory of O.D.E., regarding approximation of solu-
tions to O.D.E. These results are the essence of the passage from the infinitesimal regime of Lie
algebras of vector fields to the local and global regimes of pseudogroups of biholomorphisms and
groups of automorphisms, respectively. The main reference here is the book of R. Abraham and
J.E. Marsden [AM]. We omit many details, and so refer to this source for background from the
outset.

Definition A holomorphic vector field X (time independent or not) is called R-complete if its
integral curves through any point are defined for all t ∈ R. X is called C-complete if both X and
iX are R-complete.

In general, it is possible to extend the “time” of flows of holomorphic vector fields to the
complex domain, and define C-completeness in a different but equivalent way. Since we do not
make use of flows defined for complex time, we shall skip over this point. The interested reader is
referred to [BF2, F1, F4] for more on this subject.

Perhaps the most crucial fact for us regarding holomorphic vector fields is that the flow of
a complete holomorphic vector field is a one parameter group of automorphisms. (The group
structure is lost if the vector field is time dependent, and we just get a one parameter family of
automorphisms.) This is not true if the vector field is not complete. Generally, the flow of an
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incomplete vector field is a local one parameter group (or family if there is time dependence). Our
aim is to understand when the time T maps of this local flow can be approximated, uniformly on
compacts in their domains of definition, by automorphisms. A notion which helps in this regard is
that of consistent algorithms.

Definition [AM] Let M be a complex manifold, X ∈ XO(M), and I ⊆ R an interval containing
0. Suppose Φ : M × I →M is a continuous mapping such that Φ(z, ·) is C1 for each z ∈M , and
Φ(·, t) and ∂Φ

∂t
(·, t) are holomorphic for each t ∈ I . We say Φ is an algorithm consistent with X if

(i) Φ(·, 0) = idM , and

(ii) ∂Φ
∂t
|t=0 = X.

We write Φt := Φ(·, t) and define Φ
(1)
t := Φt, Φ

(n)
t := Φt ◦ Φ

(n−1)
t .

The following theorem is proved in [AM] (Theorem 2.1.26) in the real setting, but the same
proof holds in the holomorphic category.

Theorem 2.3. ([AM]) Let Φ be an algorithm consistent with a vector field X , and let {ϕt} be the
flow of X . Then for (t, x) in the domain of definition of {ϕt}, Φ

(n)
t/n(x) is defined for n sufficiently

large and converges to ϕt(x) as n→∞. Conversely, if Φ
(n)
t/n is defined and converges for 0 ≤ t ≤

T , then (T, x) is in the domain of definition of {ϕt}, and

lim
n→∞

Φ
(n)
t/n(x) = ϕt(x).

Remark: The notion of consistent algorithm can be applied to approximate evolution operators of
time dependent vector fields by using a standard “one step method”.

The next proposition, together with theorem 2.3, is the reason for the Lie algebra structure in
the formulation of the density property in section 3.

Proposition 2.4. If X and Y are vector fields with flows f and g, then

1. (z, t) 7→ f t ◦ gt(z) is an algorithm consistent with X + Y , and

2. (z, t) 7→ g−
√
|t| ◦ f−sgn(t)

√
|t| ◦ g

√
|t| ◦ f sgn(t)

√
|t|(z) is an algorithm consistent with [X, Y ].

Proof: This is just an exercise in differentiation. In particular, it is seen that locally g−s ◦ f−t ◦ gs ◦
f t(x) = x+ st[X, Y ](x) + o(s2 + t2), and hence the algorithm in 2 is C1. �

More generally, this proposition can easily be used to show that given any Lie combination of
vector fields, an algorithm can be constructed for this Lie combination using a finite composition
of the flows of the vector fields appearing in the Lie combination.

It is a standard fact in the theory of O.D.E. (using Grönwall’s inequality, see [AM] for the
latter) that approximation of vector fields leads to approximation of flows. Together with this,
theorem 2.3 and proposition 2.4 tell us that if we are given a family of complete vector fields {Xα}
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on a complex manifold M , then we can approximate the local flow of any Lie combination of the
Xα’s by automorphisms of M .

There are two natural subgroups ofAutM associated to the collection {Xα} of complete vector
fields. The first group, denoted by F = F({Xα}), is the group consisting of finite compositions
of all time-t maps of the vector fields in {Xα}. The second group G = G({Xα}) is the closure of
F in AutM , in the topology described in [AL], namely, the one in which we say fn → f if fn → f
and f−1

n → f−1 uniformly on compact subsets. (The first group F was of importance in [A, AL],
where they showed that in general, F 6= G. Contrast this with the case of finite dimensional Lie
groups.)

Suppose now that one is given an automorphism Φ ∈ AutM , which is connected by a C1

path {Φt} ⊆ AutM to idM , and one wants to know whether Φ ∈ G. In this direction, write
Xt := dΦt

dt
◦ Φ−1

t . Xt is a time dependent vector field. Let g be the closure in XO(M) of the Lie
algebra generated by the Xα’s. With this notation we have

Theorem 2.5. If Xt ∈ g for each t ∈ [0, 1], then Φ ∈ G.

We shall make use of the following well known lemma, which we do not prove.

Lemma 2.6. Let {fn} be a sequence of automorphisms which converges to an automorphism f
uniformly on compact sets. Then {f−1

n } converges to f−1 uniformly on compact sets.

Proof of 2.5: In view of lemma 2.6, we need only to show that given an ε > 0 and a compact set
K ⊂⊂M , there are f1, ..., fN ∈ F such that5

sup
x∈K

dist(fn ◦ ... ◦ f1(x),Φ(x)) < ε.

Fix δ > 0, and N ∈ Z+ large enough so that Nδ ≤ 1. Put T := Nδ, Tj := jδ for 0 ≤ j ≤ N ,
Ij := [Tj−1, Tj] for 1 ≤ j ≤ N , and

Xj,t :=


0 t 6∈ Ij

XTj−1
t ∈ Ij

(
∑N

j=1 Xj,t should be thought of as the piecewise constant approximation to Xt for 0 ≤ t ≤ T .)
By approximation, we may assume that each XT,j is a Lie combination of the Xα’s. The flow of
Xj,t is

gtj =



id t < Tj−1

h
t−Tj−1

j Tj−1 < t < Tj

hεj t > Tj

5The distance dist is with respect to some fixed complete Riemannian metric.
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where hj is the local flow of the (time independent) vector field XTj−1
. Then the local flow of∑N

j=1 Xj,t at time T is
hδN ◦ hδN−1 ◦ ... ◦ hδ1.

It is possible to show (see for example section 4 of [A]) that this flow converges to the time-T map
of the flow of Xt locally uniformly. The conclusion of the theorem now follows by taking T = 1
and applying proposition 2.4 and theorem 2.3 to approximate Φ by a finite composition of the hj’s,
and to approximate each of the hj’s by finite compositions of members of F . �

3 The Density Property
In this section, we define the density property, and develop some elementary aspects of it. While it
makes sense for any complex manifold, the density property is most interesting on Stein manifolds.

3.1 The Definition
Let M be a complex manifold. A Lie subalgebra g of XO(M) is said to have the density property
if the Lie subalgebra of g generated by all the complete vector fields in g is dense in g in the locally
uniform topology:

〈X ∈ g : X complete〉 = g.

Perhaps the most important case occurs when the Lie algebra under consideration is XO(M)−
the Lie algebra of all vector fields. In this case, we shall say that M has the density property.
Another very important case occurs when M admits a holomorphic volume element ω. We shall
say that (M,ω) has the volume density property if the Lie algebra X ω

O(M) of divergence zero
vector fields on M has the density property.

3.2 A Remark Regarding Automorphism Groups
In our forthcoming note [V], we explore more precisely the consequences of the density property
on automorphism groups. For now, we content ourselves with the following remark.

While there is a theory of infinite dimensional groups which assigns infinite dimensional man-
ifold structures to these groups and so on, the theory has been most successful over compact mani-
folds. Since we are interested mostly in noncompact manifolds, we shall avoid these details in this
paper, and give an operational definition based on the following facts.

Suppose we have a (finite dimensional) Lie group S acting on a manifold M . (M can be either
Cr, 1 ≤ r ≤ ω or complex.) Then the set of infinitesimal generators of one parameter subgroups
of S forms a finite dimensional Lie algebra. Conversely, the following is theorem 3.1 of [KOB1]

Proposition 3.1. ([KOB1]) Let S be a group of differentiable transformations of a manifold M .
Let S be the set of all vector fields on M which generate global 1-parameter groups {ϕt} of
transformations of M such that {ϕt} ⊆ S. If the set S generates a finite-dimensional Lie algebra
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of vector fields on M , then S is a (finite dimensional) Lie transformation group and S is the Lie
algebra of S.

This motivates the following

Definition A group G of holomorphic transformations on a complex manifold M is said to be
infinite dimensional if the set of complete holomorphic vector fields whose flows lie entirely in G
generates an infinite dimensional Lie algebra.

Of course, by the work in section 2.3 above, this definition is equivalent to any reasonable
definition of infinite dimensionality.

With this definition we have

Proposition 3.2. Let M be a Stein manifold.

1. IfM is of positive dimension and has the density property thenAutM is infinite dimensional.

2. If M is of complex dimension ≥ 2 and admits a holomorphic volume element ω such that
(M,ω) has the density property, then

AutωM := {f ∈ AutM : f ∗ω = ω}

is infinite dimensional.

The proof is an immediate consequence of the definition of the density property and the follow-
ing lemma, whose proof is itself an elementary application of Cartan’s Theorem A and the defining
properties (see [Ho]) of Stein manifolds. We state without proof

Lemma 3.3. Let M be a Stein manifold.

1. If M has positive dimension then XO(M) is an infinite dimensional vector space over C.

2. IfM is of complex dimension≥ 2 and admits a holomorphic volume element ω then X ω
O(M)

is an infinite dimensional vector space over C.

We remark only that in the proof of 2, one must use the duality provided by ω.

The converse of proposition 3.2 is false. That is, there exist Stein manifolds without the density
property which have infinite dimensional automorphism groups. We leave it to the reader to check
that C×∆ is one such manifold, where ∆ is the unit disc.

11



3.3 Product Theorems
We begin with the following result.

Theorem 3.4. If M and N are Stein manifolds with the density property, then so is M ×N

The proof is an almost immediate consequence of the following lemma.

Lemma 3.5. If a Stein manifold M has the density property and Xλ is a holomorphic vector field
on M depending holomorphically on a Stein parameter λ ∈ Λ, then Xλ can be approximated
locally uniformly on M × Λ by Lie combinations of complete holomorphic vector fields which
depend holomorphically on the parameter λ.

Proof: Let j : Λ → Cn be a proper holomorphic embedding. (Such embeddings always exist
for Stein manifolds; see e.g. [Ho].) Consider the vector bundles TM × Λ

π−→M × Λ defined
by π(v, λ) = (x, λ) for v ∈ TxM , and TM × Cn π′−→M × Cn defined by π′(v, z) = (x, z) for
v ∈ TxM . The embedding j induces a bundle monomorphism j̃ : TM × Λ → TM × Cn, i.e.,
j̃(v, λ) = (v, j(λ)). Now, the sheaf S of germs of holomorphic sections of TM ×Cn π′−→M ×Cn

is known to be a coherent analytic sheaf over M × Cn (see [GR1, GR2] for this and other facts
used below, regarding coherent analytic sheaves on Stein manifolds), and since Λ is an analytic
submanifold of Cn, the subsheaf IM×Λ of germs of holomorphic sections vanishing on M × Λ is
also known to be coherent analytic over M × Cn. By standard sheaf theory, the quotient sheaf
GM×Λ := S/IM×Λ is also coherent analytic over M×Cn, and the latter is identified with the sheaf
of germs of holomorphic sections of TM × Λ

π−→M × Λ. The short exact sequence

0→ IM×Λ → S → GM×Λ → 0

gives rise to a long exact sequence in cohomology, a segment of which is

...→ H0(M × Cn,S)→ H0(M × Cn,GM×Λ)→ H1(M × Cn, IM×Λ)→ ... ,

and since M × Cn is Stein, Cartan’s Theorem B says that

H1(M × Cn, IM×Λ) = 0.

It follows that
H0(M × Cn,S)→ H0(M × Cn,GM×Λ)

is surjective. AsH0 is identified with global sections, we see that every section of TM×Λ
π−→M×

Λ is the restriction toM×Λ of a section of TM×Cn π′−→M×Cn, via the identification mentioned
above.

To finish the proof of the lemma, we observe that the section Xλ of TM ×Λ
π−→M ×Λ can be

developed in a power series in λ (thinking of λ as a point in Cn), whose coefficients are members
of XO(M). Truncating the power series finishes the job. �
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Proof of theorem 3.4: Write X = (V,W ) ∈ XO(M×N) as X = (V, 0)+(0,W ). Now use lemma
3.5 to approximate (V, 0) and (0,W ) by a Lie combination of complete holomorphic vector fields
on M ×N which are tangent6to M and N respectively. �

We now turn our attention to some results for Stein manifolds which are not encompassed in
theorem 3.4. (We note that the Stein manifolds in question must be of positive dimension for the
results to be true, but we will neglect to mention this, assuming it from the outset.) These results
rely heavily on the following

Lemma 3.6. On any Stein manifoldM there exist vector fieldsX1, ..., XN ∈ XO(M) and functions
ϕ1, ..., ϕN ∈ O(M) such that

N∑
j=1

Xjϕj = 1.

Proof: Choose ϕ1, ..., ϕN as the coordinate functions of some immersion ϕ : M → CN . For a
holomorphic vector bundle Y , denote by S(Y ) the sheaf of germs of holomorphic sections of Y .
We denote by EM the Whitney sum of N copies of TM with itself, and by 1M the trivial line
bundle over M . Then ϕ defines a map Φ : S(EM)→ S(1M), defined by

Φ(V1, ..., VN) =
N∑
1

Vjϕj = trace(Tϕ(V1, ..., VN)).

Φ is clearly surjective, and hence we obtain a short exact sequence of coherent analytic sheaves

0→ ker Φ→ S(EM)→ S(1M)→ 0.

Passing to the induced long exact sequence in Čech cohomology and applying Cartan’s theorem
B, we obtain that H0(M,S(EM))→ H0(M,S(1M)) is surjective. In particular, the global section
1 of S(1M) is in the image of Φ∗. That is to say, there are vector fields X1, ..., XN such that∑
Xjϕj = 1, as desired. �

Remark: In a previous version of this note, we had an approximate version of this lemma, which
was sufficient for the proofs to come, but which made those proofs more cumbersome. We wish to
thank Laszlo Lempert, as well as the referee of this note, for pointing out to us that this lemma is
true.

Before stating the next theorem, we make the following observation. If M is a complex man-
ifold, then any vector field on M × C (resp. M × C∗) can be expanded in a power series (resp.
Laurent series) in z ∈ C (resp. C∗) which converges locally uniformly on M ×C (resp. M ×C∗).
The component of this vector field which is tangent to M will be a power (resp. Laurent) series in
z with coefficients in XO(M). By truncating the power (resp. Laurent) series, we can approximate
our vector field locally uniformly by vector fields which are polynomial (resp. Laurent polynomial)
in z. (This is the trivial case of lemma 3.5, whose proof basically consists in reducing to this case.)
If M admits a holomorphic volume element ω, the reader may verify that the approximation can
be done in a divergence free way. (We use the volumes dz on C and dz

z
on C∗; see section 2.2.)

6A vector field X on M ×N is said to be tangent to M if it is of the form X = (V, 0), and similarly for N .
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Theorem 3.7. If M is a Stein manifold with the density property, then so are M ×C and M ×C∗.

Proof: As observed above, we need only to prove that every holomorphic vector field which is
polynomial (or Laurent polynomial) in z can be approximated, uniformly on compacts, by Lie
combinations of complete vector fields. Moreover, since M has the density property, it is easy to
verify (say, using power or Laurent series) that the set of vector fields onM×C (orM×C∗) which
are tangent to M must also have the density property. Thus it suffices to prove that for each k ∈ Z
(k ∈ Z+ for theM×C case) and each ϕ ∈ O(M), the vector field zkϕ(x) ∂

∂z
can be approximated,

uniformly on compacts, by Lie combinations of complete vector fields. In the case of M × C and
k = 0, there is nothing to prove, as the vector field ϕ(x) ∂

∂z
is complete. For the general case, let

X1, ..., XN , ϕ1, ..., ϕN be as in lemma 3.6. Now

zk−1ϕ(x)Xj(x) (+0 · ∂
∂z

)

is approximable, locally uniformly, by Lie combinations of complete vector fields (since M has
the density property), and ϕj(x)z ∂

∂z
is complete (both on M × C and on M × C∗). Hence the

vector field
[zk−1ϕ(x)Xj(x), ϕj(x)z

∂

∂z
]

(k ≥ 1 in the M × C case) is approximable, locally uniformly, by Lie combinations of complete
vector fields. But by lemma 3.6,

N∑
j=1

[zk−1ϕ(x)Xj(x), ϕj(x)z
∂

∂z
] = zkϕ(x)

∂

∂z

modulo vector fields tangent to M . The proof is thus finished. �

Theorem 3.8. If (M,ω) is a Stein manifold with holomorphic volume element, such that (M ×
C, ω ∧ dz) has the volume density property, then M × C has the density property.

We shall need the following lemma.

Lemma 3.9. Under the hypotheses of theorem 3.8, let f ∈ O(M) and k ∈ Z+. Then there is a
holomorphic vector field Z ∈ XO(M×C) which is approximable by Lie combinations of complete
holomorphic vector fields on M × C, such that

(div Z)(x, z) = zkf(x).

Proof: Let X1, ..., XN , ϕ1, ..., ϕN be as in lemma 3.6, and put

Yj(x, z) := zkf(x)Xj(x)− 1

k + 1
zk+1divω(fXj)(x)

∂

∂z
.

Then divYj = 0, so by hypothesis Yj is approximable by Lie combinations of complete (divergence
zero) vector fields on M × C. Since ϕj(x)z ∂

∂z
is complete,

Zj(x, z) :=

[
Yj(x, z), ϕj(x)z

∂

∂z

]
14



is approximable by Lie combinations of complete vector fields on M × C, and by lemma 2.2

div Zj(x, z) = Yj(x, z)ϕj(x) = zkf(x)(Xjϕj)(x).

By lemma 3.6,

Z :=
N∑
j=1

Zj

does the job. �

Proof of 3.8: Let V ∈ XO(M ×C). By the observation preceding theorem 3.7, we may assume V
is of the form

V (x, z) =
Ñ∑
k=0

(
zkVk(x) +

1

k + 1
zk+1ψk+1(x)

∂

∂z

)
+ ψ0(x)

∂

∂z
.

Since ψ0(x) ∂
∂z

is complete, we may assume ψ0 = 0. Now

div V (x, z) =
Ñ∑
k=0

(
zk(divωVk(x) + ψk+1(x))

)
.

Let Zk, 0 ≤ k ≤ Ñ be vector fields on M × C, chosen so that

div Zk = zk(divωVk(x) + ψk+1(x)).

Such vector fields, with the additional feature that they are approximable by Lie combinations of
complete vector fields on M × C, are provided by lemma 3.9. A computation shows that

div(V −
∑

Zk) = 0.

It follows from the hypotheses that V −
∑
Zk is approximable by Lie combinations of complete

vector fields, and hence so is V =
∑
Zk + (V −

∑
Zk). This completes the proof. �

4 Complex Lie Groups
A complex Lie group G is a complex manifold which has the structure of a group, such that the
mappings Lg : h 7→ gh and Rg : h 7→ hg of G to itself are holomorphic for each g ∈ G. For
details about complex Lie groups, we refer the reader to [FH], which is one of many references on
the subject.

Every complex Lie group has trivial canonical bundle, and in fact admits a canonical one
parameter family of holomorphic volume elements, constructed as follows: Let V1, ..., Vn be a
basis of left invariant vector fields on G, and let α1, ..., αn be a dual basis of left invariant 1-forms.
Then the holomorphic volume element ωG := α1 ∧ ... ∧ αn is a left invariant holomorphic volume
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element. Every left invariant volume element is a constant multiple of ωG. We note that the Lie
algebra of vector fields X ∈ XO(G) such that LXωG = 0 (i.e., divωG

X = 0) is independent of the
choice of left invariant ωG. As we pointed out in section 2.2, if

X =
n∑
1

XiVi ∈ XO(G)

then

divωG
X =

n∑
1

ViXi.

Thus, in particular, left invariant vector fields are of divergence zero.
Let us now turn our attention to Stein Lie groups, i.e., complex Lie groups whose underlying

manifold is Stein. It is known [KU, U] that G is Stein if and only if H1(G,O) = 0.

Proposition 4.1. IfG is Stein, then everyX ∈ XO(G) is C-complete if and only if it is R-complete.

Proof: SinceG admits one to one immersions of either C or C∗ tangent to any direction at any point
(use the flows of left invariant vector fields), there are no nonconstant negative plurisubharmonic
functions on G. The result follows from a theorem of Forstnerič [F1]. �

Let us give some examples of Stein Lie groups.

1. Every simply connected complex Lie group is Stein [O]. (Recall that there is for every finite
dimensional complex Lie algebra a a unique (as Lie group, but not as complex manifold)
simply connected complex Lie group whose Lie algebra is a.) Some examples are SL(n,C),
Spin(n,C), and Sp(n,C), among many others.

2. Gl(n,C) (n ≥ 1) and So(n,C) (n ≥ 2) are Stein. (So(n,C) is the subgroup of Gl(n,C)
consisting of matrices A satisfying At = A−1.) None of these are simply connected (and
they are distinct except for Gl(1,C) = So(2,C) = C∗). Gl(n,C) is Stein because it is the
complement in Cn2 of the closed subvariety {det = 0}. So(n,C) is Stein because it is a
closed complex submanifold of the Stein manifold Gl(n,C).

3. The only commutative Stein Lie groups are (C∗)k × Cl.

There are, of course, other examples.

4.1 Density Theorems
We now come to our first results regarding the density property. When we refer to a complex Lie
group as having the volume density property, it is with respect to (any) left invariant holomorphic
volume element.

Theorem 4.2. Let G be a complex Lie group.
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1. G× C has the volume density property.

2. If G is Stein and of positive dimension, then G× C has the density property.

Remarks:

1. If G = Cn−1, n ≥ 2, then 4.2.1 was proved by E. Andersén [A] and 4.2.2 by E. Andersén
and L. Lempert [AL]7.

2. C has the volume density property, but not the density property. Indeed, divdzX = dX/dz =
0 implies that X is constant, and all constant vector fields are complete. On the other hand,
all complete vector fields on C are affine linear.

The requirement in theorem 4.2.2 that G is Stein cannot be dropped completely. For example,
if T is any compact complex Lie group (these are all diffeomorphic to tori) then T×C cannot have
the density property. Indeed we leave it as an exercise to prove that

Proposition 4.3. Aut (T× C) consists of all mappings of the form

(t, z) 7→ (Fz(t), az + b), Fz ∈ AutT, a ∈ C∗, b ∈ C.

Consequently every Lie combination of complete vector fields on T× C is of the form

(t, z) 7→ (f(z), αz + β), f ∈ O(C), α, β ∈ C,

and so T× C cannot have the density property.

Proof of theorem 4.2:

We begin by pointing out two things. First, as the reader can verify, every vector field on G × C
which has zero divergence can be approximated, locally uniformly, by divergence zero vector
fields which are polynomial in z ∈ C. Second, the vector fields (g, z) 7→ ϕ(g) ∂

∂z
(ϕ ∈ O(G)) are

complete and have divergence zero.
Assuming 4.2.1, 4.2.2 follows immediately from theorem 3.8. To prove 4.2.1, let V1, ..., Vn

(n = dimCG) be a basis of left invariant vector fields on G. A computation shows that for any
ϕ ∈ O(G) there is a function ψ ∈ O(G× C) such that

[ϕ(g)
∂

∂z
,

1

k + 1
zk+1Vj] = zkϕ(g)Vj + ψ(g, z)

∂

∂z

is a Lie combination of complete holomorphic vector fields on G × C. Hence, taking any vector
field P ∈ X ω

O(G× C) (ω = ωG×C) which is polynomial in z ∈ C,

P (g, z) =
n∑
j=1

(∑
k

ϕkj(g)zk

)
Vj(g) +

∑
l

fl(g)zl
∂

∂z
,

7See footnote 1
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there is a Lie combination X ∈ X ω
O(G × C) of complete holomorphic vector fields such that

P −X = h ∂
∂z

for some h ∈ O(G × C). And since div(P −X) = 0, h is independent of z ∈ C,
whence P −X is complete (by our second observation above). Thus P = X + (P −X) is a Lie
combination of complete vector fields. By our first observation above, the theorem is proved. �

We cannot, at this time, prove a result like theorem 4.2.1 with G × C∗ in place of G × C.
However, we have

Theorem 4.4. Let G be a complex Lie group.

1. If G has the volume density property, then G× C∗ has the volume density property.

2. If G is Stein and has the density property, then G× C∗ has the density property.

From this we have, by induction, the following special case.

Corollary 4.5. Let k ∈ {2, 3, ...}.

1. (C∗)k has the volume density property.

2. If (C∗)2 has the density property, then (C∗)k has the density property.

Remark: At this point it not known whether (C∗)2 has the density property, or what is more, if there
are any complete holomorphic vector field on (C∗)2 with 1

zw
dz ∧ dw-divergence not identically

zero.

Proof of theorem 4.4:

The second statement is a special case of theorem 3.8. The proof of the first is virtually the
same as that of theorem 4.2 except that there is one additional detail which must be taken care of
first. This detail is precisely the reason that one needs additional hypotheses on G.

Suppose (M,ω) is a complex manifold with holomorphic volume element, and

X ∈ X ω∧ dx
x

O (M × C∗)

is of the form

X(p, x) =
∑
k∈Z

xkVk(p) +

(∑
k∈Z

xkϕk(p)

)
x
∂

∂x
.

If

divX = divω

(∑
k∈Z

xkVk(p)

)
+ x

∂

∂x

(∑
k∈Z

xkϕk(p)

)
=
∑
k∈Z

xk(divωVk(p) + kϕk(p))

= 0
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then
divωV0 = 0.

Returning to our proof, suppose G has the volume density property. We note that, similar to
the proof of theorem 4.2, those divergence zero holomorphic vector fields on G × C∗ which are
Laurent polynomials in x ∈ C∗ form a dense subset of the divergence zero holomorphic vector
fields on G× C∗. Let

P (g, x) =
n∑
j=1

(∑
k

ϕkj(g)xk

)
Vj(g) +

∑
l

(xlfl(g))x
∂

∂x

be a divergence zero holomorphic vector fields on G×C∗ which is Laurent polynomial in x ∈ C∗.
By the above computation,

div

(
n∑
j=1

ϕ0j(g)Vj(g)

)
= 0.

Thus, since G has the volume density property, we may assume without loss of generality that

n∑
j=1

ϕ0j(g)Vj(g) = 0.

Now, as xkVj and 1
k
ϕjk(g)x ∂

∂x
are complete, and[

xkVj,
1

k
ϕjk(g)x

∂

∂x

]
= xkϕjk(g)Vj + (∗)x ∂

∂x
, k ∈ Z\{0},

we see that there is a vector field X on G×C∗ which is a Lie combination of complete divergence
zero holomorphic vector fields on G × C∗, such that P − X = hx ∂

∂x
for some h ∈ O(G × C∗).

Now 0 = div(P −X) = x ∂
∂x
h, which implies that h is independent of x ∈ C∗. It is thus a simple

matter to check that P−X is complete. Hence P = X+(P−X) is a Lie combination of complete
holomorphic divergence zero vector fields, as required. �

5 Relative Geometric Structures in Cn

5.1 Main Results
Let us begin with the definitions of the geometric structures in question. Suppose that j : M ↪→ Cn

is a holomorphically embedded Stein manifold. (For us, an embedding is a proper 1-1 immersion.)
We define the geometric structures (on Cn) gT (j) and g0(j) as the families of holomorphic vector
fields on Cn which are tangent to j(M), and which vanish on j(M), respectively. In case M = Ck

and j0 : Ck ↪→ Cn is the standard embedding j0(z1, ..., zk) = (z1, ..., zk, 0, ..., 0), we put gn,kT :=
gT (j0), and gn,k0 := g0(j0). It is easy to verify that gT (j) and g0(j) are subalgebras of XO(Cn), the
Lie algebra of holomorphic vector fields on Cn with the usual Lie bracket [X, Y ] := XY − Y X .
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Hence these are geometric structures in the sense of section 1, and as such, one can investigate
whether or not they have the density property.

For general Stein manifolds M , gT (j) and g0(j) will not have the density property. For in-
stance, in the case of gT (j) one can encounter obstructions which can be seen via the following
considerations:
For X ∈ gT (j) denote by j∗X the restriction of X to j(M). j∗X can be identified in a natural way
with an intrinsically defined tangent vector field on M , and it is a standard fact that j∗[X, Y ] =
[j∗X, j∗Y ], the bracket on the right being that of XO(M). Now, it is a consequence of Cartan’s
theorems that every vector field on M is the restriction to M of some vector field in Cn, that is,
j∗(gT (j)) = XO(M). With this, and with the obvious but important fact that every complete vector
field on Cn gives rise, via the Lie algebra epimorphism j∗, to a complete vector field on M , we
see that the density property for XO(M) is a necessary condition for gT (j) to have the density
property. Thus if AutM is finite dimensional (for example if M = C or C∗ or if M is Kobayashi
hyperbolic) then gT (j) will fail to have the density property (see proposition 3.2).

Remark: These arguments do not hold for g0(j), and in this regard, one is led to ask the following
very basic question: Is there an embedding j : ∆ ↪→ Cn of the disc in Cn (for any n ≥ 2) such
that g0(j) has the density property? More basically, is there such an embedding with the property
that there is a non-zero complete holomorphic vector field on Cn which vanishes precisely on
j(∆)? This is of course a very special case of the more general question: What are the zero sets of
complete holomorphic vector fields?

More remarkable, however, is the fact that even if XO(M) has the density property, the partic-
ular embedding in question may still force that gT (j) (and g0(j)) do not have the density property.
This reveals the “relative nature” of the geometric structures gT (j) and g0(j), i.e., their depen-
dence on the embedding j as well as on M . The examples displaying this phenomenon will be
given shortly.

From here on we restrict ourselves to the case M = Ck. The following theorem is the main
result of this section.

Theorem 5.1. Let n and k be integers with 1 ≤ k < n.

1. gn,k0 has the density property.

2. If k ≥ 2, gn,kT has the density property.

Remark: As pointed out above, AutC is finite dimensional, and hence gn,1T cannot have the density
property.

Before proving theorem 5.1, we turn our attention to the study of its dependence on the fact that
the embedding j0 defines gn,kT and gn,k0 , as opposed to some other embedding. The first observation
is that for any Φ ∈ AutCn, gT (Φ ◦ j) (resp. g0(Φ ◦ j)) has the density property if and only if gT (j)
(resp. g0(j)) does. Thus theorem 5.1 holds if j0 is replaced by any straightenable8 embedding

8An embedding j : Ck ↪→ Cn is straightenable (also called tame) if there exists Φ ∈ AutCn such that Φ ◦ j(z) =
(z, 0) for all z ∈ Ck.
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j : Ck ↪→ Cn. Abyankhar and Moh [AMo] showed that every polynomial embedding C ↪→ C2

is straightenable by (polynomial) automorphisms. The same result for polynomial embeddings
C ↪→ Cn holds true for n ≥ 3, and is somewhat more elementary [J, K].9 However, there are
embeddings of Ck in Cn which cannot be straightened out by automorphisms, for 1 ≤ k ≤ n− 1
[RR2, FGR, BF1, F2]. In fact [BF1, F2] there exist embeddings j′ : Ck ↪→ Cn with the property
that every immersion f : Cn−k → Cn has image which intersects j′(Ck) infinitely often. As a
corollary of the latter results, one has

Proposition 5.2. There do not exist n − k complete independent (as vector fields, but not neces-
sarily pointwise) holomorphic vector fields in Cn which are in involution, and which are tangent
to j′(Ck).

Proof: If such vector fields exist, we obtain, via the holomorphic Frobenius theorem, an immersion
Cn−k → Cn which is in the complement of j′(Cn−k), contradicting [BF1, F2]. �

Consequently one immediately obtains

Corollary 5.3. There are embeddings j : Cn−1 ↪→ Cn (n ≥ 2) such that gT (j) and g0(j) do not
have the density property.

5.2 Auxiliary Algebras and the Proof of Theorem 5.1
The proof of theorem 5.1 is somewhat technical, and requires several cases. The general scheme,
however, is not markedly different from that in [AL], where it is proved thatXO(Cn) has the density
property. There are two major differences. The first is that the introduction of the Lie algebra
structure of XO(Cn) into the game simplifies the technicalities. The second is that technicalities
require the introduction of several auxiliary Lie algebras. In [AL] the auxiliary Lie algebra used is
that of divergence zero vector fields, which is in itself quite interesting (see [A]). In our case,
different auxiliary algebras are needed for different proofs, and not all (but most) are defined
as kernels of divergence-type operators. And though the algebras we define may be of intrinsic
interest, we do not focus our attention on them.

Definition: A Lie subalgebra a ⊆ XO(Cn) is called densely polynomial if {X ∈ a : X is
polynomial } is dense in a, in the topology of uniform convergence on compacts in Cn.

All the Lie algebras which come up in this section are densely polynomial. This fact is based
on the observations that all of our linear differential operators map homogeneous polynomial maps
of degree j to homogeneous polynomial functions of degree j − 1, and that holomorphic maps
of the form Cn 3 z 7→ zjX(z) ∈ Cn can be approximated uniformly on compact subsets by
polynomials of the form Cn 3 z 7→ zjP (z) ∈ Cn. We shall neglect to mention this again, leaving
it to the reader to verify the statement a is densely polynomial whenever it arises.

We now list a collection of complete vector fields on Cn which will be used to prove that the
various Lie algebras in question have the density property. These are all shear fields, with obvious

9For the case n = 3 it is not known that the straightening automorphism can be taken polynomial.
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conditions added so as to force these fields to lie in the particular algebra in question. The latter
conditions will be clear when the particular algebras are defined. For z ∈ Cn we write z = (z′, z′′)
with z′ ∈ Ck and z′′ ∈ Cn−k. Also f, g ∈ O(Cn). Here is our list:

(S1,f,j) z 7→ f(z) ∂
∂zj

∂f
∂zj
≡ 0 1 ≤ j ≤ k

(G1,f,j) z 7→ zjf(z) ∂
∂zj

∂f
∂zj
≡ 0 1 ≤ j ≤ k

(S2,g,j) z 7→ g(z) ∂
∂zj

∂g
∂zj
≡ 0, g(z′, 0) ≡ 0 k + 1 ≤ j ≤ n

(G2,g,j) z 7→ zjg(z) ∂
∂zj

∂g
∂zj
≡ 0 k + 1 ≤ j ≤ n

We note that when k < n − 1, these shears all lie in gn,kT , that (S2,g,j) and (G2,f,j) lie in gn,k0 , and
that if f(z′, 0) ≡ 0, (S1,f,j) and (G1,f,j) also lie in gn,k0 . When n = k + 1, (S2,g,j) ≡ 0.

Definition: A vector field in Cn is called n-basic (resp. 1-basic) if it is of the form

zα
∂

∂zj
+ f

∂

∂zn
(1 ≤ j ≤ n− 1) (resp. f

∂

∂z1

+ zα
∂

∂zj
(2 ≤ j ≤ n))

for some f ∈ O(Cn). That is to say,

(i) All but one of its last (resp. first) n-1 components are zero, and
(ii) this non-zero component is a monomial.

Proof of 5.1.1

Let 1 ≤ k ≤ n− 1. Define δ = δn,k : gn,k0 → O(Cn) by

δn,k(
∑n

j=1Xj
∂
∂zj

) :=


∂X1

∂z1
+ ...+ ∂Xn

∂zn
, k < n− 1

∂X1

∂z1
+ ...+ ∂Xn

∂zn
− Xn

zn
, k = n− 1

and let hn,k := kerδn,k. We note that δn,k is well defined. Indeed, the only possible problem is
when k = n− 1, and in this case

X ∈ gn,k0 ⇒ Xn(z′, 0) ≡ 0 ⇐⇒ zn divides Xn.

It is a straightforward matter10 to verify that

δ([X, Y ]) = X(δY )− Y (δX)

from which it follows that hn,k is a Lie subalgebra of gn,k0 , i.e., it is a geometric structure.

10This can be done directly, but is most easily seen by noticing that the divergence with respect to the left invariant
volume form associated to the complex Lie groups Cn (when k < n−1) and Cn−1×C∗ (when k = n−1) is precisely
δ, and then applying lemma 2.2.
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Lemma 5.4. For all j such that 1 ≤ j ≤ n− 1 and all α ∈ (Z+)n such that αk+1 + ...+ αn > 0,
there is an n-basic vector field zα ∂

∂zj
+ (∗) ∂

∂zn
which is a Lie combination of complete vector fields

in hn,k.

Proof:

Case 1: 1 ≤ k < n− 1 (Note: n > 2)

(a) Suppose k < j ≤ n− 1. If αj = 0, Zα ∂
∂zj

is complete. If αj0, then

X1(z) := z
αj

j

∂

∂zn
, X2(z) :=

1

(αn + 1)

zαzn
z
αj

j

∂

∂zj

are complete vector fields in hn,k, and

[X1, X2](z) = zα
∂

∂zj
+ (∗) ∂

∂zn
.

(b) Suppose 1 ≤ j ≤ k. Then one of αk+1, ..., αn must be positive. Say that l ∈ {k + 1, ..., n} is
the smallest integer such that αl0.

(b’) If l < n, take

X1(z) := z
αj

j z
αl
l

∂

∂zn
, X2(z) :=

1

(αn + 1)

zαzn
z
αj

j z
αl
l

∂

∂zj

to get

[X1, X2](z) = zα
∂

∂zj
+ (∗) ∂

∂zn
.

(b”) If l = n, take

X1(z) := z
αj

j z
αn
n

∂

∂zn−1

, X2(z) :=
1

(αn−1 + 1)

zαzn−1

z
αj

j z
αn
n

∂

∂zj
.

Then X1, X2 ∈ hn,k and

[X1, X2](z) = zα
∂

∂zj
−
(

αj
αn−1 + 1

)
zn−1z

α

zj

∂

∂zn−1

,

and by (a) there are complete vector fields Y1, Y2 ∈ hn,k such that

[Y1, Y2](z) =

(
αj

αn−1 + 1

)
zn−1z

α

zj

∂

∂zn−1

+ (∗) ∂

∂zn
.

23



Thus
[X1, X2](z) + [Y1, Y2](z) = zα

∂

∂zj
+ (∗) ∂

∂zn
,

and case 1 is proved.

Case 2: k = n− 1. In this case αn > 0. We take

X1(z) := znz
αj

j

∂

∂zn
, X2(z) :=

1

αn

zα

z
αj

j

∂

∂zj
.

Then
[X1, X2](z) = zα

∂

∂zj
+ (∗) ∂

∂zn
.

This proves case 2, and hence lemma 5.4. �

Corollary 5.5. hn,k has the density property for 1 ≤ k ≤ n− 1.

Proof: In view of 5.4, for each α ∈ (Z+)n such that αk+1+...+αn > 0 and each j ∈ {1, 2, ..., n−1}
there is an n-basic vector field zα ∂

∂zj
+ (∗) ∂

∂zn
which is a Lie combination of complete vector fields

in hn,k. It then follows that, given a polynomial vector field X ∈ hn,k, there is a Lie combination
Y ∈ hn,k of complete vector fields such thatX−Y = (∗) ∂

∂zn
. Now, δ(X−Y ) = 0, and it is a simple

matter to see that any n-basic vector field in kerδ is complete. It follows that X = Y + (X − Y )
is a Lie combination of complete vector fields, and since hn,k is densely polynomial, the proof is
complete. �

Lemma 5.6. If X ∈ gn,n−1
0 , then δX|Cn−1×{0} = 0.

Proof: Let

X = X1
∂

∂z1

+ ...+Xn−1
∂

∂zn−1

+ znξ
∂

∂zn
∈ gn,n−1

0 .

Then Xj|Cn−1×{0} = 0 for 1 ≤ j ≤ n− 1, and since δX = ∂X1

∂z1
+ ...+ ∂Xn−1

∂zn−1
+ zn

∂ξ
∂zn

, the lemma
is proved. �

Lemma 5.7. Given α ∈ (Z+)n (αn > 0 if k = n − 1; see lemma 5.6), there is a Lie combination
X of complete polynomial vector fields in gn,k0 with δX(z) = zα.

Proof:

Case 1: k < n− 1 (⇒ n > 2).

If αl = 0 for some l with k + 1 ≤ l ≤ n, take X(z) = zαzl
∂
∂zl

. Then (δX)(z) = zα. Otherwise
αl > 0 for all l ∈ {k + 1, ..., n}. In that case, take

X1(z) = zα1
1 ...z

αn−1

n−1

∂

∂zn
, X2(z) =

1

(αn + 1)
zαn+1
n zn−1

∂

∂zn−1

.
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(Note that these are both in gn,k0 for k < n− 1.) Then

δX1 = 0, δX2(z) =
zαn+1
n

(αn + 1)
,

and so
δ([X1, X2])(z) = (X1δX2)(z) = zα.

Hence X = [X1, X2] does the job.

Case 2: k = n− 1.

In this case simply take

X1(z) = zα1
1 zn

∂

∂zn
, X2(z) =

1

αn

z1z
α

zα1
1

∂

∂z1

.

Then
δX1 = 0, δX2(z) =

zα

αnz
α1
1

,

and
δ([X1, X2])(z) = (X1δX2)(z) = zα.

Again, X = [X1, X2] does the job, and lemma 5.7 is proved. �

Conclusion of the Proof of 5.1.1:

By Lemmas 5.6 and 5.7, given a polynomial vector field X ∈ gn,k0 , there is a polynomial Lie
combination Y of complete vector fields in gn,k0 such that δX = δY . Hence X − Y ∈ hn,k, and
since X − Y is polynomial, by lemma 5.5 X = Y + (X − Y ) is a Lie combination of complete
vector fields in gn,k0 . Since gn,k0 is densely polynomial, 5.1.1 is proved. �

The tangential phenomena seem to present more technicalities than the vanishing phenomena
which we have just dealt with.

Proof of 5.1.2

We begin with the definition of an auxiliary Lie algebra. A straightforward calculation shows

Lemma 5.8. The set of vector fields

nn,k :=
{
X ∈ gn,kT : zj divides Xj, k + 1 ≤ j ≤ n

}
is a Lie subalgebra of gn,kT .
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Remark: nn,n−1 = gn,n−1
T , but for 1 ≤ k < n− 1, nn,k ( gn,kT .

We define δ : nn,k → O(Cn) by

δ

(
X1

∂

∂z1

+ ...+Xn
∂

∂zn

)
:=

∂X1

∂z1

+ ...+
∂Xn

∂zn
− Xk+1

zk+1

− ...− Xn

zn

and put
ln,k := ker(δ : nn,k → O(Cn)).

As before, one verifies that δ([X, Y ]) = XδY − Y δX , whence ln,k is a Lie algebra.

Lemma 5.9. For 2 ≤ k ≤ n− 1, ln,k has the density property.

Proof: For the same reasons as in the proof of lemma 5.5, it suffices to prove that for any j ∈
{2, ..., n}, α ∈ (Z+)n (αj > 0 if j > k), there is a 1-basic vector field (∗) ∂

∂z1
+ zα ∂

∂zj
which is a

Lie combination of complete vector fields in ln,k.
If j > k then αj > 0, and we take

X1(z) = z
αj−1
j

∂

∂z1

, X2(z) =
1

α1 + 1

z1zjz
α

z
αj

j

∂

∂zj
.

Then
[X1, X2](z) = (∗) ∂

∂z1

+ zα
∂

∂zj
.

Otherwise j ≤ k (here we use k ≥ 2), and we simply take

X1(z) = z
αj

j

∂

∂z1

, X2(z) =
1

α1 + 1

z1z
α

z
αj

j

∂

∂zj

and again get

[X1, X2](z) = (∗) ∂

∂z1

+ zα
∂

∂zj
.

This proves lemma 5.9. �

Lemma 5.10. nn,k has the density property for 2 ≤ k ≤ n− 1.

Proof: It suffices, by lemma 5.9 and the linearity of δ, to show that given any monomial zα, there
is a polynomial vector field X which is a Lie combination of complete vector fields in nn,k such
that (δX)(z) = zα. For this take

X1(z) =
zαzn
zαn
n

∂

∂zn
X2(z) =

1

αn
z1z

αn
n

∂

∂z1

.

Then
δ[X1, X2](z) = X1δX2 −X2δX1 = X1δX2 = zα,

and the proof is finished. �

We note that theorem 5.1.2 is now proved if k = n− 1.
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Lemma 5.11. Let 2 ≤ k ≤ n − 2. Given any polynomial vector field X ∈ gn,kT , there is a
polynomial vector field X ′ which is a Lie combination of complete vector fields in gn,kT , such that
X −X ′ ∈ nn,k.

Proof: Let j ∈ {k+1, ..., n} and l ∈ {k+1, ..., n}\{j}. (This is possible because |{k+1, ..., n}| ≥
2.) Set

X1(z) := z
αj

j

∂

∂z1

X2(z) :=
1

α1 + 1

zlz
αz1

z
αj

j

∂

∂zj
.

Then
[X1, X2](z) = (∗) ∂

∂z1

+ zlz
α ∂

∂zj
,

and lemma 5.11 follows as is by now usual. �

Conclusion of the Proof of 5.1.2: Let X ∈ gn,kT be a polynomial holomorphic vector field. By
lemma 5.11 there is a polynomial vector field X ′ ∈ gn,kT such that X −X ′ ∈ nn,k. Since nn,k has
the density property (lemma 5.10), and since gn,kT is densely polynomial, theorem 5.1.2 follows.�

5.3 More Than One Submanifold; A Prelude
In many constructions, one might need to prove results about vector fields in Cn which vanish in
more than one submanifold. We shall restrict ourselves to affine complex hyperplanes (i.e., zero
sets of holomorphic polynomials of degree 1).

Example 5.1. Two parallel hyperplanes.

If we fix two parallel hyperplanes in Cn, the set of vector fields on Cn which vanish on these
hyperplanes will not have the density property. We prove this now.

Proposition 5.12. Aut (Cn × C\{0, 1}) consists of maps of the form

(Cn × C\{0, 1}) 3 (z, w) 7→ (Fw(z), γ(w)),

where γ ∈ Aut (C\{0, 1}).

Remark: Actually, (z, w) 7→ Fw(z) is holomorphic, and for each w ∈ C\{0, 1} Fw ∈ Aut Cn, but
we won’t need these facts.

Proof: Let Φ ∈ Aut Cn, and write Φ = (f, g). Fixing w ∈ C\{0, 1}, we get a map Cn 3
z 7→ g(z, w) ∈ C\{0, 1}, which must be constant. Write γ(w) := g(z, w). Repeating the same
argument for Φ−1 we get Φ−1(z, w) = (f̃(z, w), γ̃(w)). Computing Φ ◦ Φ−1 and Φ−1 ◦ Φ, both of
which are the identity, we get the result. �

Now, Aut (C\{0, 1}) consists of all Möbius transformations which permute {0, 1,∞} ⊆ S2,
and since the values of a Möbius transformation on {0, 1,∞} uniquely determine this transforma-
tion, Aut (C\{0, 1}) is a finite group. It follows from this and proposition 5.12 that every complete
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vector field in Cn which vanishes on the two hyperplanes {zn = 0} ∪ {zn = 1} must have its
zn component identically zero. Since this is clearly true of Lie brackets of complete vector fields
as well, and since there are plenty of vector fields whose zn component is not identically zero, it
follows that the Lie algebra of vector fields on Cn which vanish on {zn = 0} ∪ {zn = 1} does not
have the density property.

Example 5.2. k hyperplanes through zero.

If we have k ≥ n + 1 hyperplanes through the origin in Cn, then as soon as k = k(n) is large
enough (for example, if n = 2, k = 3 will do) we obtain “little Picard theorem”-type obstruc-
tions to the density property. Denote the union of these hyperplanes by S. We quote a theorem of
Fujimoto and Green from [L] to the effect that any mapping f : C → CPn which misses n + p
hyperplanes has image which is contained in a projective linear subspace of dimension ≤ [n

p
]. In

particular, it must be the case that every complete holomorphic vector field on Cn which vanishes
on S must be tangent to every hyperplane through 0 in Cn. Since being tangent to a hyperplane
through zero is a “Lie-closed” condition, it follows that any Lie combination of complete holo-
morphic vector fields on Cn which vanishes on S must be tangent to every hyperplane through 0
in Cn. However, there are many vector fields on Cn which vanish on S and which are transverse to
many hyperplanes through the origin. Thus the theorem of Fujimoto and Green gives obstructions
to the density property.

On the other hand, if 1 ≤ k ≤ n, there are some positive results. Since the methods used
to prove these results are analogous to those used in the proof of theorem 5.1, we shall content
ourselves with stating results, and omit all proofs. Replacing k by n−k, we denote by an,k the Lie
algebra of vector fields which vanish on {zk+1 = 0} ∪ ... ∪ {zn = 0}. We have

Proposition 5.13. With the above notation,

1. If 1 ≤ k ≤ n− 2, an,k has the density property.

2. The Lie algebra of vector fields in an,n which satisfy

n∑
j=1

(
∂Xj

∂zj
− Xj

zj

)
= 0

has the density property.

In connection with the remark following corollary 4.5, it is not known whether an,n has the density
property.
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