(1) (a) Let \(f : \mathbb{D} - \{0\} \rightarrow \mathbb{C} \) be a holomorphic function. Show that if \(f \) has an essential singularity at 0, then \(f \) is not injective.
 Hint: Use the Weierstrass-Casorati and Open Mapping Theorems.
(b) Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) be an injective holomorphic function. Show that \(f \) is affine linear, i.e., that
 \[f(z) = az + b \]
 for some \(a, b \in \mathbb{C} \) with \(a \neq 0 \).
(2) Prove Theorem 4.4.35; the theorem on normal forms of meromorphic functions.
(3) Prove Theorem 4.5.16; the general version of the residue Theorem.
(4) Let \(g \in \mathcal{C}_\infty(\mathbb{C}) \). Consider the inhomogeneous Cauchy-Riemann Equations
 \[\frac{\partial u}{\partial \bar{z}} = g \]
 for the unknown function \(u \).
 (a) Show there exists some \(u \) satisfying the equation (CR) whose support is not compact.
 (b) Show that if there exists a solution \(u \) of (CR) with compact support then
 \[\int_{\mathbb{C}} z^n g(z) dA(z) = 0 \quad \text{for all } n = 1, 2, \ldots . \]
 (c) Show that if
 \[\int_{\mathbb{C}} z^n g(z) dA(z) = 0 \quad \text{for all } n = 1, 2, \ldots . \]
 then the solution
 \[u(z) := -\frac{1}{\pi} \int_{\mathbb{C}} \frac{g(\zeta) dA(\zeta)}{\zeta - z} \]
 has compact support, and in fact its support is contained in the union of the support of \(g \) and every bounded component of the complement of the support of \(g \).
(5) Consider the domain
 \[\Omega := \{ z \in \mathbb{C} ; 1 < |z| < 2 \text{ or } 4 < |z| < 5 \} . \]
 (a) Let \(f \in \mathcal{O}(\Omega) \), and let \(K \subset \subset \Omega \). Show that there is a holomorphic function \(g \in \mathcal{O}(\mathbb{C} - \{0, 3\}) \) such that
 \[\sup_K |f - g| < 1/2 . \]
 (b) Let
 \[L := \{ z \in \mathbb{C} ; 4/3 \leq |z| \leq 3/2 \text{ or } 4.1 \leq |z| \leq 4.5 \} \subset \subset \Omega . \]
 Find a function \(h \in \mathcal{O}(\Omega) \) such that there is no holomorphic function \(g : \mathbb{C} - \{0\} \rightarrow \mathbb{C} \) satisfying
 \[\sup_L |g - h| \leq 1 . \]
(6) Show that there is a holomorphic function \(f : \mathbb{C} - \{0\} \rightarrow \mathbb{C} - \{0\} \) such that
 \[f(1/n) = 1 \quad \text{and} \quad f'(1/n) = 1/\sqrt{n} \quad \text{for all } n = 1, 2, 3, \ldots . \]
What kind of singularity can \(f \) have at the origin?