MAT 542: COMPLEX ANALYSIS I
PROBLEM SET 4

(1) (a) Let \(N \geq 0 \) be an integer. Find all entire holomorphic functions \(f \) such that
\[
\int_{C} \frac{|f(z)|^2}{(1 + |z|^2)^{N+2}} \, dx \wedge dy < +\infty.
\]
(b) Find all entire holomorphic functions \(f \) such that
\[
\sup_{z \in \mathbb{C}} \left| \frac{\partial^6 f(z)}{\partial z^6} \right| \leq 4.
\]

(2) Show that if \(f : \mathbb{H} \to \mathbb{H} \) is holomorphic then
\[
\frac{|f'(z)|}{\text{Im } f(z)} \leq \frac{1}{\text{Im } z} \quad \text{and} \quad \frac{|f(z) - f(z_0)|}{|f'(z)|} \leq \frac{|z - z_0|}{|z - \bar{z}_0|}, \quad z, z_0 \in \mathbb{H}.
\]

(3) Give an example of a sequence of smooth functions \(f_j : \mathbb{C} \to \mathbb{C} \) that converges uniformly to a function \(f \) that is not smooth. Must \(f \) be continuous?

(4) Give an example of a normal family \(\mathcal{F} \subset \mathcal{O}(\Omega) \) on a domain \(\Omega \subset \mathbb{C} \) that is not closed, i.e., there is a convergent sequence \(\{f_j\} \subset \mathcal{F} \) whose limit is not in \(\mathcal{F} \).

(5) Show that there exists a smooth diffeomorphism from \(\Omega_1 := \mathbb{D} - \{0, 1/2\} \) to \(\Omega_2 := \mathbb{D} - \{1/2, 3/4\} \). Show that no such diffeomorphism can be holomorphic.

(6) Let \(\Omega_1, \Omega_2 \) be domains in \(\mathbb{C} \), and let \(f : \Omega_1 \to \Omega_2 \) be an injective holomorphic map. Fix \(a \in \Omega_1 \), and let \(g \in \mathcal{O}(\Omega_2 \setminus \{f(a)\}) \).
 (a) Show that the singularity of \(g \) at \(f(a) \) is the same as the singularity of \(g \circ f \in \mathcal{O}(\Omega_1 \setminus \{a\}) \) at \(a \). That is to say, show that \(g \) has a removable singularity (resp. pole of order \(m \), essential singularity) at \(f(a) \) if and only if \(g \circ f \) has a removable singularity (resp. pole of order \(m \), essential singularity) at \(a \).
 (b) What can you say if the map \(f \) is holomorphic but not necessarily injective?

(7) Let \(z_1, z_2 \in \mathbb{D} \) be 2 distinct points, let \(w_1, w_2 \in \mathbb{D} \) be 2 distinct points, and let \(f : \mathbb{D} - \{z_1, z_2\} \to \mathbb{D} - \{w_1, w_2\} \) be an injective holomorphic map. Show that
\[
\left| \frac{z_1 - z_2}{1 - \bar{z}_1 \bar{z}_2} \right| = \left| \frac{w_1 - w_2}{1 - \bar{w}_1 \bar{w}_2} \right|.
\]