Homework 8 (due 4/11)

MAT 342: Applied Complex Analysis

Read Sections 54-59 from Chapter 4 and 60-61 from Chapter 5.

Problem 1. Let C be the positively oriented rectangle with sides parallel to the lines $x= \pm 3$ and $y= \pm 5$. Evaluate each of the following integrals:
(i) $\int_{C} \frac{e^{-z} \sin z d z}{(z-i \pi)^{3}}$
(ii) $\int_{C} \frac{\cos z d z}{z\left(2 z^{2}-31 i\right)}$

Problem 2. Compute

$$
\int_{C} \frac{1}{\left(z^{2}+4\right)^{2}} d z
$$

where C is the positively oriented circle of radius 2 around the point i.
Problem 3. Let C be the circle $|z|=3$, positively oriented. Consider the function

$$
g(z)=\int_{C} \frac{2 w^{2}-w-2}{w-z} d w
$$

defined for $|z| \neq 3$. Show that $g(2)=8 \pi i$ and compute $g(z)$ when $|z|>3$.
Problem 4. Show that if f is analytic within and on a simple closed contour C, and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

Problem 5. Suppose that f is an entire function, and consider $u(z)=$ $\operatorname{Re} f(z)$. Assume that u is bounded above, so there exists a constant $c>0$ such that $u(z) \leq c$ for all $z \in \mathbb{C}$. Show that the functions f and u must be constant in \mathbb{C}. Hint: Apply Liouville's theorem to the function $g(z)=e^{f(z)}$.

Problem 6. Is the following statement true?
Suppose that f is continuous in a closed bounded region R and it is analytic and non-constant in the interior of R. Then the minimum value of $|f(z)|$ in R occurs somewhere on the boundary of R and never in the interior.

