Homework 7 (due 4/4)

MAT 342: Applied Complex Analysis

Read Sections 48–50 and 52–53 from Chapter 4.

Problem 1. Show that $\int_C f(z)dz = 0$, where C is the unit circle, positively oriented, and

(i) f(z) = Log(iz+3) (ii) $f(z) = \frac{1}{z^4+5i}$

Problem 2. Let C be the circle of radius 100, centered at the origin and positively oriented. The goal of this problem is to compute

$$\int_C \frac{1}{z^2 - 3z + 2} dz.$$

- (i) Decompose $\frac{1}{z^2-3z+2}$ into its partial fractions.
- (ii) Compute $\int_{C_1} \frac{1}{z-1} dz$ and $\int_{C_2} \frac{1}{z-2} dz$, where C_1 is the circle of radius 1/4, centered at 1 and positively oriented, and C_2 is the circle of radius 1/4, centered at 2 and positively oriented.
- (iii) Use the Theorem of Section 53 (Cauchy-Goursat Theorem for multiply connected domains) or its Corollary to evaluate $\int_C \frac{1}{z^2 3z + 2} dz$. Explain carefully why the Theorem or the Corollary can be applied.

Problem 3. Let C_1 be the positively oriented square with vertices at the points 1+i, -1+i, -1-i, 1-i, and let C_2 be the positively oriented circle of radius 4, centered at the origin. Show that

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz,$$

when

(i)
$$f(z) = \frac{e^z}{z^2 \sin(z/2)}$$
 (ii) $f(z) = \frac{1}{10z^3 + 3i}$

Problem 4.

(i) Let C_0 be the positively oriented circle of radius R > 0, centered at the point 1 + i. Compute

$$\int_{C_0} (z - 1 - i)^n dz,$$

where $n \in \mathbb{Z}$. Note that the answer depends on n.

(ii) Let C be any positively oriented simple closed contour surrounding the point 1 + i. Compute

$$\int_C (z-1-i)^n dz,$$

where $n \in \mathbb{Z}$. Again, the answer depends on n.

Problem 5. Let C denote the positively oriented boundary of the half disk $0 \le r \le 1, 0 \le \theta \le \pi$, and let f(z) be defined by

$$f(z) = \sqrt{r}e^{i\theta/2}$$
, where $z = re^{i\theta}$, $r > 0$, $-\pi/2 < \theta < 3\pi/2$.

We also define f(0) = 0. Note that f is continuous on the contour C, hence $\int_C f(z)dz$ is defined. Compute $\int_C f(z)dz$ by parametrizing the contour C (note that C consists of a semi-circle and two radii). Explain why we cannot apply the Cauchy-Goursat Theorem in this case.