Homework 7 (due 4/4)

MAT 342: Applied Complex Analysis

Read Sections 48-50 and 52-53 from Chapter 4.

Problem 1. Show that $\int_{C} f(z) d z=0$, where C is the unit circle, positively oriented, and
(i) $f(z)=\log (i z+3)$
(ii) $f(z)=\frac{1}{z^{4}+5 i}$

Problem 2. Let C be the circle of radius 100, centered at the origin and positively oriented. The goal of this problem is to compute

$$
\int_{C} \frac{1}{z^{2}-3 z+2} d z
$$

(i) Decompose $\frac{1}{z^{2}-3 z+2}$ into its partial fractions.
(ii) Compute $\int_{C_{1}} \frac{1}{z-1} d z$ and $\int_{C_{2}} \frac{1}{z-2} d z$, where C_{1} is the circle of radius $1 / 4$, centered at 1 and positively oriented, and C_{2} is the circle of radius $1 / 4$, centered at 2 and positively oriented.
(iii) Use the Theorem of Section 53 (Cauchy-Goursat Theorem for multiply connected domains) or its Corollary to evaluate $\int_{C} \frac{1}{z^{2}-3 z+2} d z$. Explain carefully why the Theorem or the Corollary can be applied.

Problem 3. Let C_{1} be the positively oriented square with vertices at the points $1+i,-1+i,-1-i, 1-i$, and let C_{2} be the positively oriented circle of radius 4 , centered at the origin. Show that

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

when
(i) $f(z)=\frac{e^{z}}{z^{2} \sin (z / 2)}$
(ii) $f(z)=\frac{1}{10 z^{3}+3 i}$

Problem 4.

(i) Let C_{0} be the positively oriented circle of radius $R>0$, centered at the point $1+i$. Compute

$$
\int_{C_{0}}(z-1-i)^{n} d z
$$

where $n \in \mathbb{Z}$. Note that the answer depends on n.
(ii) Let C be any positively oriented simple closed contour surrounding the point $1+i$. Compute

$$
\int_{C}(z-1-i)^{n} d z
$$

where $n \in \mathbb{Z}$. Again, the answer depends on n.
Problem 5. Let C denote the positively oriented boundary of the half disk $0 \leq r \leq 1,0 \leq \theta \leq \pi$, and let $f(z)$ be defined by

$$
f(z)=\sqrt{r} e^{i \theta / 2}, \text { where } z=r e^{i \theta}, r>0,-\pi / 2<\theta<3 \pi / 2 .
$$

We also define $f(0)=0$. Note that f is continuous on the contour C, hence $\int_{C} f(z) d z$ is defined. Compute $\int_{C} f(z) d z$ by parametrizing the contour C (note that C consists of a semi-circle and two radii). Explain why we cannot apply the Cauchy-Goursat Theorem in this case.

