## Homework 11 (due 5/2)

MAT 342: Applied Complex Analysis

Read Sections 74-82 from Chapter 6.

Problem 1. Explain why 0 is an isolated singular point and find the residue at $z=0$ of each of the following functions:
(i) $z \cos (1 / z)$
(ii) $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$
(iii) $\frac{1}{z^{4} \sin z}$

Problem 2. Evaluate the integral of each of the following functions around the positively oriented circle $|z|=4$ :
(i) $z^{2} e^{1 / z}$
(ii) $\frac{z+1}{(z-1)(z-5) z}$

Problem 3. Evaluate the integrals:
(i)

$$
\int_{C} \frac{5 z-8}{(z-1)(z-2)} d z
$$

where $C$ is the positively oriented circle $|z|=3$ using the residue at infinity of the function $\frac{5 z-8}{(z-1)(z-2)}$.
(ii)

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

where $C$ is the positively oriented circle $|z-2|=2$.
Problem 4. Find the isolated singular points of the following functions and determine whether they are removable singular points, essential singular points, or poles:
(i) $z e^{1 / z}$
(ii) $\frac{\sin z}{z}$
(iii) $\frac{\cos z}{z(z-\pi / 2)}$
(iv) $\left(\frac{z}{2 z+3 i}\right)^{5}$

Problem 5. Show that the singular points of the following functions are poles. Determine their order and find the corresponding residues.
(i) $\frac{1-\cos z}{z^{3}}$
(ii) $\frac{e^{-3 z}-1}{z^{5}(z-1)}$

Problem 6. Let $f$ be a function that is analytic in a disk $\left|z-z_{0}\right|<R$. Note that $f$ has a Taylor expansion in $\left|z-z_{0}\right|<R$.
(i) The function $g(z)=\frac{f(z)}{z-z_{0}}$ is analytic in the annulus $0<\left|z-z_{0}\right|<R$. Write the Laurent expansion of $g$ in the annulus $0<\left|z-z_{0}\right|<R$, using the Taylor expansion of $f$.
(ii) Show that if $f\left(z_{0}\right)=0$, then the point $z_{0}$ is a removable singular point for the function $g$.
(iii) Show that if $f\left(z_{0}\right) \neq 0$, then the point $z_{0}$ is a simple pole of the function $g$. In this case, find the residue of $g$ at $z=z_{0}$.

