# Homework 10 (due 4/25) 

MAT 342: Applied Complex Analysis

Read Sections 69-73 from Chapter 5 and Sections 74-75 from Chapter 6.

## Problem 1.

(i) Differentiate the Maclaurin series of $\frac{1}{1-z}$ in order to find the Maclaurin series for $\frac{1}{(1-z)^{2}}$.
(ii) By substituting $z+1$ for $z$ in the the Maclaurin series that you found in part (i), derive the Taylor series representation for the function $\frac{1}{z^{2}}$ in the disk $|z+1|<1$.
(iii) By substituting $\frac{1}{1-z}$ for $z$ in the Maclaurin series that you found in part (i), derive the Laurent series representation for the function $\frac{1}{z^{2}}$, centered at the point $z_{0}=1$. What is the annulus in which the representation holds?

Problem 2. Show that the function

$$
f(z)= \begin{cases}\frac{1-\cos z}{z^{2}}, & z \neq 0 \\ \frac{1}{2}, & z=0\end{cases}
$$

is entire. (Hint: Find the power series representation of the function $\frac{1-\cos z}{z^{2}}$ with center at 0 and show that it converges for all $z \in \mathbb{C}$.)

## Problem 3.

(i) Show that the Taylor series expansion of the function $\frac{1}{z}$, with center at 1 , is

$$
\frac{1}{z}=\sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n}
$$

for $|z-1|<1$.
(ii) Explain why the function $\log z$ is analytic in the disk $|z-1|<1$.
(iii) For each point $z$ with $|z-1|<1$ consider the straight line segment $C_{z}$ starting at 1 and ending at $z$. Evaluate

$$
\int_{C_{z}} \frac{1}{z} d z .
$$

(Hint: You do not need to do any computation. Note that $\log z$ is an antiderivative of $1 / z$ in the disk $|z-1|<1$.)
(iv) Integrate each term of the Taylor series along the contour $C_{z}$ from part (i) in order to prove that

$$
\log z=\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-1)^{n+1}}{n+1}
$$

for $|z-1|<1$. This is the Taylor series representation of $\log z$ in the disk $|z-1|<1$.

Problem 4. Using the Taylor series representation of $\log z$ from the last part of Problem 3, show that the function

$$
f(z)= \begin{cases}\frac{\log z}{z-1}, & z \neq 0, z \neq 1, \text { and }-\pi<\operatorname{Arg}(z)<\pi \\ 1, & z=1\end{cases}
$$

is analytic in its domain.
Problem 5. Use multiplication of power series in order to find the Taylor series expansion up to $z^{4}$ of the function

$$
\frac{e^{z}}{z^{2}+1}
$$

with center at the origin. On what disk is the Taylor series convergent?
Problem 6. Use division of power series in order to find the first three non-zero terms of the Laurent series expansion of the function

$$
\frac{1}{\cos z-1},
$$

with center at the origin. What is the annulus of convergence?

