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The uniformization problem

Question

How can we parametrize a curve of �nite length in a natural way?

Arclength parametrization

γ

a b

γ(a)
γ(b)

Lipschitz property: |γ(a)−γ(b)| ≤ |a−b|
Problem

How can we parametrize a surface of �nite area in a natural way?
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Smooth surfaces

Theorem (Uniformization Theorem, Koebe, Poincaré 1907)

Every simply connected Riemannian surface can be conformally
uniformized by the complex plane or the unit disk or the Riemann
sphere.

f

f conformal: balls −→ balls (or squares → squares) in in�nitesimal

scale

=⇒ f locally bi-Lipschitz C−1ℓ(γ)≤ ℓ(f ◦γ)≤Cℓ(γ)
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Bi-Lipschitz parametrization

"
In non-smooth surfaces conformal parametrizations are

not bi-Lipschitz!

f

f ′ → 0

f

Existence of local bi-Lipschitz parametrizations:

- Bounds on �atness (Toro, David,...)

- Existence of �at forms (Heinonen, Sullivan, Keith,..)

- Curvature bounds (Fu, Bonk, Lang,...)
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Surfaces with singularities

Lipschitz parametrization f : C→X =⇒ ℓ(f ◦γ)≤Cℓ(γ)

=⇒ Every two points can be joined with a curve of �nite length

1 Finite area

2 Smooth except for one point P

3 Every curve passing through P
has in�nite length

=⇒

No Lipschitz parametrization
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Quasiconformal and quasisymmetric maps

f : X →Y homeomorphism between metric spaces

Quasiconformal: preserves shapes in�nitesimally:

x

B(x ,r)

f
f (x)

f (B(x ,r))

R1 ≃R2

Quasisymmetric: preserves shapes in all scales.
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Quasisymmetric uniformization

Theorem (Bonk�Kleiner 2002)

If a metric sphere X is Ahlfors 2-regular and LLC, then there
exists a quasisymmetric map f : Ĉ→X .

- Ahlfors 2-regular: C−1r2 ≤µ(B(x ,r))≤Cr2

- LLC (Linearly Locally Connected): no cusps, thin
bottlenecks, dense wrinkles
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Quasisymmetric uniformization

Methods of proof:

- Through circle packings (Bonk�Kleiner)

- Through quasiconformal uniformization (Rajala)

- Through solution to Plateau's problem (Lytchak�Wenger)

Generalizations to other surfaces:

- Plane, disk, half-plane (Wildrick)

- Compact surfaces (Geyer�Wildrick, Ikonen, Fitzi�Meier)

- Domains (Merenkov�Wildrick, Rajala�Rasimus, Rehmert)
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Geometric de�nition of quasiconformality

X metric surface of locally �nite area (Hausdor� 2-measure)

Γ family of curves in X

ρ : X → [0,∞] is admissible for Γ if

∫
γ
ρds ≥ 1 for all γ ∈ Γ

ModΓ= inf
ρ

∫
X
ρ2dH 2 −→ Outer measure on curve families

f conformal: ModΓ=Mod f (Γ)

f quasiconformal: K−1ModΓ≤Mod f (Γ)≤KModΓ
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Properties of modulus in the plane

Γ(Q)

Γ∗(Q)

ModΓ(Q) ·ModΓ∗(Q)= 1

ModΓ= 0

ModΓ> 0
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Quasiconformal uniformization

(Quasi)conformal parametrization f : C→X

=⇒ The family of (non-constant) curves passing through each point

has modulus zero

1 Finite area

2 Smooth except for one point P

3 The family of curves passing

through P has positive modulus.

=⇒

No quasiconformal parametrization
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Quasiconformal uniformization

Magic Ball

Designed by:

Yuri Shumakov

Presented by:

Jo Nakashima

1 Length-isometric to cylinder outside poles

2 The family of curves through poles has positive modulus

3 Not quasiconformal to sphere

Question

Is this the only enemy?
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Quasiconformal uniformization

Question

Is this the only enemy?

Let C ⊂R2 Cantor set. Set ω=χR2\C .

dω(x ,y)= inf
γ

∫
γ
ωds

(R2,dω) is homeomorphic to R2

If |C | > 0 then (R2,dω) is not quasiconformal to R2

Near density points

ModΓ(Q)ModΓ∗(Q)→∞
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Quasiconformal uniformization

Theorem (Rajala 2017)

Let X be a metric sphere of �nite area. There exists a
quasiconformal map f : Ĉ→X if and only if X is reciprocal.

Reciprocity conditions:

1 The family of non-constant curves passing through each point x
has modulus zero.

lim
r→0

ModΓ(B(x ,r),X \B(x ,R))= 0

2 For each topological quadrilateral Q:

Γ(Q)

Γ∗(Q)

κ−1 ≤ModΓ(Q) ·ModΓ∗(Q)≤ κ

Dimitrios Ntalampekos Uniformization of metric surfaces of �nite area



Quasiconformal uniformization

• If X is reciprocal, there exists f with
π
4
ModΓ≤Mod f (Γ)≤ π

2
ModΓ (Rajala, Romney)

Optimal constants attained by id :R2 →X = (R2,ℓ∞)

• X Ahlfors 2-regular and LLC

=⇒ Quasiconformal maps are quasisymmetric

=⇒ Bonk�Kleiner Theorem

• For every surface

κ−1 ≤ModΓ(Q) ·ModΓ∗(Q) (Rajala�Romney)

κ−1 = (π/4)2 (Eriksson-Bique�Poggi-Corradini)

• X is reciprocal if and only if

ModΓ(Q) ·ModΓ∗(Q)≤ κ (N.�Romney)

• If the modulus of curves passing through each point is zero,

then X is not necessarily reciprocal. (N.�Romney)

Dimitrios Ntalampekos Uniformization of metric surfaces of �nite area



Uniformization of general surfaces

Problem (Rajala�Wenger)

Let X be a metric sphere of �nite area. Does there exist a weakly

quasiconformal map f : Ĉ→X?

Weakly quasiconformal map:

1 Uniform limit of homeomorphisms

2 ModΓ≤KMod f (Γ)

Theorem (N.�Romney 2021, Meier�Wenger 2021)

Yes for length surfaces.

Theorem (N.�Romney 2022)

Yes for all surfaces.
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Example

f

1 f is weakly quasiconformal

2 f is not injective in black balls around poles

3 f is conformal outside black balls
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Weakly quasiconformal uniformization

Theorem (N.�Romney 2022)

Let X be a metric surface of locally �nite area.

- There exists a complete Riemannian surface Z of constant
curvature.

- Z is homeomorphic to X .

- There exists a 4
π -WQC map f : Z →X .

• f is QC if and only if X is reciprocal =⇒ Rajala's Theorem

• X is Ahlfors 2-regular and LLC sphere

=⇒ f is quasisymmetric

=⇒ Bonk�Kleiner Theorem

Dimitrios Ntalampekos Uniformization of metric surfaces of �nite area



Approximation by polyhedral surfaces

Theorem (N.�Romney 2021, 2022)

Let X be a metric sphere of �nite area. There exists a sequence
Xn of polyhedral spheres and approximately isometric
homeomorphisms fn : Xn →X such that

limsup
n→∞

∣∣f −1n (A)
∣∣≤K

∣∣A∣∣
for each compact set A⊂X , where K is a uniform constant.

Xn X

fn
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Proof of WQC uniformization

• Consider polyhedral spheres Xn →X

• Orientable polyhedral surfaces are Riemann surfaces

• Classical uniformization theorem

=⇒ There exist conformal parametrizations gn : Ĉ→Xn.

• Area bounds on Xn

- gn is equicontinuous

- |Dgn| bounded in L2

• The maps gn (sub)converge to a WQC map g : Ĉ→X .
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Proof of WQC uniformization

" Proof scheme fails for general surfaces!

Xn =D\ [0,1]× {0} X =D

fn = id

gn : D→Xn conformal maps

do not converge to WQC map g : D→X
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Approximation by polyhedral surfaces

Theorem (N.�Romney 2021, 2022)

Let X be a metric surface of locally �nite area. There exists a
sequence Xn of polyhedral surfaces and approximately isometric
embeddings fn : Xn →X such that

limsup
n→∞

∣∣f −1n (A)
∣∣≤K

∣∣A∣∣
for each compact set A⊂X , where K is a uniform constant.
Moreover, there exist approximately isometric retractions
Rn : X → fn(Xn).

Xn =D\ [0,1]× {0} X =D

fn = id
There exists

no retraction

R : X →Xn

Conjecture: Optimal constant K = 4/π attained by X = (R2,ℓ∞).
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Proof of polyhedral approximation

For simplicity assume that X has a length metric:

d(x ,y)= inf
γ
ℓ(γ)

Step 1: Triangulate X

Theorem (Creutz�Romney 2022)

Let X be a length surface with polygonal boundary. For each ε> 0

there exists a convex triangulation of X with mesh < ε.

Triangulation:

- X =⋃
T∈T T , non-overlapping, locally �nite

- T Jordan region, ∂T union of three geodesics

- Edges and vertices do not match exactly

Idea: Replace each triangular region T with a polyhedral surface S
such that |S | ≤C |T | and diam(S)≤C diam(T )
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Step 2: Bi-Lipschitz embedding of triangles into the plane

Metric triangle ∆= ∂T : homeomorphic to S1, union of three

non-overlapping geodesics

Proposition (N.�Romney)

Every metric triangle is 4-bi-Lipschitz embeddable into R2.

F (x)F

x

x∆
∆

Idea: Construct polyhedral surface S in the plane and glue it to the

surface X via F
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Step 3: Area estimate

Theorem

Let T be a metric closed disk with ∆= ∂T . If F : ∆→ ∂Ω⊂R2 is an
L-Lipschitz homeomorphism, then

|Ω| ≤ 4L2

π
|T |.

∆

F

∂Ω Ω
T
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Non-length surfaces

We de�ne the extended length metric d : X ×X → [0,∞]

d(x ,y)= inf
γ
ℓd (γ)

• d ≤ d ≤∞
• If X has locally �nite area, then d(x ,y)<∞ for a dense set of

x ,y ∈X
• d might not be continuous with respect to d

Idea: Apply previous proof strategy to the �length metric" d
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Applications of uniformization

1 Simpli�cation of de�nition of reciprocal surfaces (N.�Romney)

Theorem (N.�Romney)

A metric surface of locally �nite area is reciprocal if and only if
there exists κ> 0 such that

ModΓ(Q) ·ModΓ∗(Q)≤ κ

for each quadrilateral Q.

Γ(Q)

Γ∗(Q)
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Applications of uniformization

2 Coarea inequality on surfaces without assumptions

(Esmayli�Ikonen�Rajala, Meier�N.)

Theorem (Esmayli�Ikonen�Rajala 2022)

Let X be a metric surface of locally �nite area and u : X →R be a
monotone function with weak upper gradient ρ ∈ Lploc(X ),
p ∈ [1,∞]. Then ∫ ∫

u−1(t)
g dH 1dt ≤C

∫
gρdH 2

for each Borel function g : X → [0,∞].

" Can fail for Lipschitz functions! (True for smooth X )
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Applications of uniformization

3 Lipschitz-Volume rigidity (Meier�N.)

Theorem (Folklore)

Let X ,Y be closed Riemannian n-manifolds with |X | = |Y |. Then
every 1-Lipschitz map from X onto Y is an isometry.

Theorem (Meier�N. 2023)

Let X be a closed metric surface and Y be a closed Riemannian
surface with |X | = |Y |. Then every 1-Lipschitz map from X onto Y
is an isometry.

Dimitrios Ntalampekos Uniformization of metric surfaces of �nite area



Open problems

Problem

Classify metric surfaces of locally �nite area up to QC maps.

Is there a Riemannian surface Z and a degenerate conformal
weight ω such that (Z ,dω) is QC to X?

dω(x ,y)= inf
γ

∫
γ
ωds

Problem (Le Donne)

If X is a length surface, is there a length-isometric/BLD embedding
into RN?

Yes for Heisenberg group (Le Donne)
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Thank you!

Happy birthday Mario!
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