Uniformization of metric surfaces of finite area

Dimitrios Ntalampekos

Stony Brook University

Quasiworld Workshop University of Helsinki

August 14 - 18, 2023

Question

How can we parametrize a curve of finite length in a natural way?

Arclength parametrization

Lipschitz property: $|\gamma(a) - \gamma(b)| \le |a - b|$

Problem

How can we parametrize a **surface** of finite **area** in a natural way?

Theorem (Uniformization Theorem, Koebe, Poincaré 1907)

Every simply connected Riemannian surface can be conformally uniformized by the complex **plane** or the unit **disk** or the Riemann **sphere**.

f conformal: balls \rightarrow balls (or squares \rightarrow squares) in infinitesimal scale

 $\implies f$ locally bi-Lipschitz $C^{-1}\ell(\gamma) \leq \ell(f \circ \gamma) \leq C\ell(\gamma)$

In non-smooth surfaces conformal parametrizations are not bi-Lipschitz!

Existence of local bi-Lipschitz parametrizations:

- Bounds on flatness (Toro, David,...)
- Existence of flat forms (Heinonen, Sullivan, Keith,..)
- Curvature bounds (Fu, Bonk, Lang,...)

Lipschitz parametrization $f: \mathbb{C} \to X \implies \ell(f \circ \gamma) \le C\ell(\gamma)$ \implies Every two points can be joined with a curve of **finite length**

 Finite area
 Smooth except for one point P
 Every curve passing through P has infinite length

↓ No Lipschitz parametrization

Quasiconformal and quasisymmetric maps

 $f: X \rightarrow Y$ homeomorphism between metric spaces

Quasiconformal: preserves shapes infinitesimally:

Quasisymmetric: preserves shapes in all scales.

Theorem (Bonk–Kleiner 2002)

If a metric sphere X is **Ahlfors** 2-**regular** and **LLC**, then there exists a **quasisymmetric** map $f : \widehat{\mathbb{C}} \to X$.

- Ahlfors 2-regular: $C^{-1}r^2 \le \mu(B(x,r)) \le Cr^2$
- LLC (Linearly Locally Connected): no cusps, thin bottlenecks, dense wrinkles

Methods of proof:

- Through circle packings (Bonk-Kleiner)
- Through quasiconformal uniformization (Rajala)
- Through solution to Plateau's problem (Lytchak-Wenger)

Generalizations to other surfaces:

- Plane, disk, half-plane (Wildrick)
- Compact surfaces (Geyer-Wildrick, Ikonen, Fitzi-Meier)
- Domains (Merenkov–Wildrick, Rajala–Rasimus, Rehmert)

Geometric definition of quasiconformality

X metric surface of locally finite area (Hausdorff 2-measure) Γ family of curves in X

 $\rho: X \to [0,\infty]$ is admissible for Γ if $\int_{\gamma} \rho \, ds \ge 1$ for all $\gamma \in \Gamma$

 $\operatorname{Mod} \Gamma = \inf_{\rho} \int_{X} \rho^2 d\mathcal{H}^2 \longrightarrow \operatorname{Outer measure on curve families}$

f conformal: $Mod \Gamma = Mod f(\Gamma)$ f quasiconformal: $K^{-1} Mod \Gamma \leq Mod f(\Gamma) \leq K Mod \Gamma$

 $\operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^*(Q) = 1$

 $Mod \Gamma = 0$

 $\operatorname{Mod}\Gamma > 0$

(Quasi)conformal parametrization $f: \mathbb{C} \to X$ \implies The family of (non-constant) curves passing through each point has modulus zero

Finite area
 Smooth except for one point P
 The family of curves passing through P has positive modulus.

↓ No quasiconformal parametrization

Quasiconformal uniformization

Magic Ball Designed by: Yuri Shumakov Presented by: Jo Nakashima

Length-isometric to cylinder outside poles

- 2 The family of curves through poles has positive modulus
- ③ Not quasiconformal to sphere

Question

Is this the only enemy?

Question

Is this the only enemy?

Let $C \subset \mathbb{R}^2$ Cantor set. Set $\omega = \chi_{\mathbb{R}^2 \setminus C}$.

$$d_{\omega}(x,y) = \inf_{\gamma} \int_{\gamma} \omega \, ds$$

 (\mathbb{R}^2, d_ω) is homeomorphic to \mathbb{R}^2

If |C| > 0 then (\mathbb{R}^2, d_ω) is not quasiconformal to \mathbb{R}^2

1

Near density points

$$\operatorname{Mod} \Gamma(Q) \operatorname{Mod} \Gamma^*(Q) \to \infty$$

Theorem (Rajala 2017)

Let X be a metric sphere of **finite area**. There exists a **quasiconformal** map $f: \widehat{\mathbb{C}} \to X$ if and only if X is **reciprocal**.

Reciprocity conditions:

(1) The family of non-constant curves passing through each point x has modulus zero.

$$\lim_{r\to 0} \operatorname{Mod} \Gamma(B(x,r),X \setminus B(x,R)) = 0$$

2 For each topological quadrilateral Q:

$$\kappa^{-1} \leq \operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^*(Q) \leq \kappa$$

Quasiconformal uniformization

- If X is reciprocal, there exists f with $\frac{\pi}{4} \operatorname{Mod} \Gamma \leq \operatorname{Mod} f(\Gamma) \leq \frac{\pi}{2} \operatorname{Mod} \Gamma$ (Rajala, Romney) Optimal constants attained by $id : \mathbb{R}^2 \to X = (\mathbb{R}^2, \ell^{\infty})$
- X Ahlfors 2-regular and LLC
 ⇒ Quasiconformal maps are quasisymmetric
 ⇒ Bonk-Kleiner Theorem
- For every surface $\kappa^{-1} \leq \operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^*(Q)$ (Rajala-Romney) $\kappa^{-1} = (\pi/4)^2$ (Eriksson-Bique-Poggi-Corradini)
- X is reciprocal if and only if ModΓ(Q) · ModΓ*(Q) ≤ κ (N.-Romney)
- If the modulus of curves passing through each point is zero, then X is not necessarily reciprocal. (N.-Romney)

Problem (Rajala-Wenger)

Let X be a metric sphere of **finite area**. Does there exist a **weakly** quasiconformal map $f : \widehat{\mathbb{C}} \to X$?

Weakly quasiconformal map:

Uniform limit of homeomorphisms

 $2 \operatorname{Mod} \Gamma \leq K \operatorname{Mod} f(\Gamma)$

Theorem (N.-Romney 2021, Meier-Wenger 2021)

Yes for length surfaces.

Theorem (N.-Romney 2022)

Yes for all surfaces.

- (1) f is weakly quasiconformal
- 2 f is not injective in black balls around poles
- 3 f is conformal outside black balls

Weakly quasiconformal uniformization

Theorem (N.-Romney 2022)

Let X be a metric surface of locally finite area.

- There exists a complete Riemannian surface Z of constant curvature.
- Z is homeomorphic to X.
- There exists a $\frac{4}{\pi}$ -WQC map $f: Z \rightarrow X$.
- f is QC if and only if X is reciprocal \implies Rajala's Theorem
- X is Ahlfors 2-regular and LLC sphere
 - \implies f is quasisymmetric
 - ⇒ Bonk–Kleiner Theorem

Approximation by polyhedral surfaces

Theorem (N.–Romney 2021, 2022)

Let X be a metric sphere of finite area. There exists a sequence X_n of polyhedral spheres and approximately isometric homeomorphisms $f_n: X_n \to X$ such that

$$\limsup_{n \to \infty} \left| f_n^{-1}(A) \right| \le K \left| A \right|$$

for each compact set $A \subset X$, where K is a uniform constant.

Proof of WQC uniformization

- Consider polyhedral **spheres** $X_n \rightarrow X$
- Orientable polyhedral surfaces are Riemann surfaces
- Classical uniformization theorem \implies There exist conformal parametrizations $g_n : \widehat{\mathbb{C}} \to X_n$.
- Area bounds on X_n
 - g_n is equicontinuous
 - $|Dg_n|$ bounded in L^2
- The maps g_n (sub)converge to a WQC map $g: \widehat{\mathbb{C}} \to X$.

Proof of WQC uniformization

▲ Proof scheme fails for general surfaces!

 $g_n : \mathbb{D} \to X_n$ conformal maps do not converge to WQC map $g : \mathbb{D} \to X$

Approximation by polyhedral surfaces

Theorem (N.–Romney 2021, 2022)

Let X be a metric surface of locally finite area. There exists a sequence X_n of polyhedral surfaces and approximately isometric embeddings $f_n: X_n \to X$ such that

$$\limsup_{n \to \infty} \left| f_n^{-1}(A) \right| \le K \left| A \right|$$

for each compact set $A \subset X$, where K is a uniform constant. Moreover, there exist approximately isometric **retractions** $R_n: X \to f_n(X_n)$.

Proof of polyhedral approximation

For simplicity assume that X has a length metric:

$$d(x,y) = \inf_{\gamma} \ell(\gamma)$$

Step 1: Triangulate X

Theorem (Creutz–Romney 2022)

Let X be a length surface with polygonal boundary. For each $\varepsilon > 0$ there exists a convex triangulation of X with mesh $< \varepsilon$.

Triangulation:

- $X = \bigcup_{T \in \mathscr{T}} T$, non-overlapping, locally finite
- T Jordan region, ∂T union of three geodesics
- Edges and vertices do not match exactly

Idea: Replace each triangular region T with a polyhedral surface S such that $|S| \le C|T|$ and diam $(S) \le C$ diam(T)

Step 2: Bi-Lipschitz embedding of triangles into the plane

Metric triangle $\Delta = \partial T$: homeomorphic to \mathbb{S}^1 , union of three non-overlapping geodesics

Proposition (N.-Romney)

Every metric triangle is 4-bi-Lipschitz embeddable into \mathbb{R}^2 .

Idea: Construct polyhedral surface S in the plane and glue it to the surface X via F

Step 3: Area estimate

Theorem

Let T be a metric closed disk with $\Delta = \partial T$. If $F : \Delta \to \partial \Omega \subset \mathbb{R}^2$ is an L-Lipschitz homeomorphism, then

$$|\Omega| \le \frac{4L^2}{\pi} |T|.$$

We define the extended length metric $\overline{d}: X \times X \to [0,\infty]$

$$\overline{d}(x,y) = \inf_{\gamma} \ell_d(\gamma)$$

- $d \leq \overline{d} \leq \infty$
- If X has locally finite area, then $\overline{d}(x,y) < \infty$ for a dense set of $x, y \in X$
- \overline{d} might not be continuous with respect to d

Idea: Apply previous proof strategy to the "length metric" \overline{d}

Applications of uniformization

1 Simplification of definition of reciprocal surfaces (N.-Romney)

Theorem (N.–Romney)

A metric surface of locally finite area is **reciprocal** if and only if there exists $\kappa > 0$ such that

 $\operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^*(Q) \leq \kappa$

for each quadrilateral Q.

Applications of uniformization

(2) Coarea inequality on surfaces without assumptions (Esmayli–Ikonen–Rajala, Meier–N.)

Theorem (Esmayli–Ikonen–Rajala 2022)

Let X be a metric surface of locally finite area and $u: X \to \mathbb{R}$ be a **monotone** function with weak upper gradient $\rho \in L^p_{loc}(X)$, $p \in [1,\infty]$. Then

$$\int \int_{u^{-1}(t)} g \, d\mathcal{H}^1 dt \le C \int g \rho \, d\mathcal{H}^2$$

for each Borel function $g: X \to [0,\infty]$.

 \wedge Can fail for Lipschitz functions! (True for smooth X)

Applications of uniformization

Theorem (Folklore)

Let X, Y be closed Riemannian n-manifolds with |X| = |Y|. Then every 1-Lipschitz map from X onto Y is an isometry.

Theorem (Meier-N. 2023)

Let X be a closed **metric** surface and Y be a closed Riemannian surface with |X| = |Y|. Then every 1-Lipschitz map from X onto Y is an isometry.

Problem

Classify metric surfaces of locally finite area up to QC maps.

Is there a Riemannian surface Z and a degenerate conformal weight ω such that (Z, d_{ω}) is QC to X?

$$d_{\omega}(x,y) = \inf_{\gamma} \int_{\gamma} \omega \, ds$$

Problem (Le Donne)

If X is a length surface, is there a length-isometric/BLD embedding into \mathbb{R}^{N} ?

Yes for Heisenberg group (Le Donne)

Thank you!

Happy birthday Mario!