Uniformization of metric surfaces of finite area

Dimitrios Ntalampekos

Stony Brook University
Quasiworld Workshop
University of Helsinki
August 14-18, 2023

The uniformization problem

Question

How can we parametrize a curve of finite length in a natural way?
Arclength parametrization

Lipschitz property: $|\gamma(a)-\gamma(b)| \leq|a-b|$

Problem

How can we parametrize a surface of finite area in a natural way?

Theorem (Uniformization Theorem, Koebe, Poincaré 1907)

Every simply connected Riemannian surface can be conformally uniformized by the complex plane or the unit disk or the Riemann sphere.

f conformal: balls \longrightarrow balls (or squares \rightarrow squares) in infinitesimal scale
$\Longrightarrow f$ locally bi-Lipschitz $C^{-1} \ell(\gamma) \leq \ell(f \circ \gamma) \leq C \ell(\gamma)$

Bi-Lipschitz parametrization

In non-smooth surfaces conformal parametrizations are not bi-Lipschitz!

Existence of local bi-Lipschitz parametrizations:

- Bounds on flatness (Toro, David,...)
- Existence of flat forms (Heinonen, Sullivan, Keith,..)
- Curvature bounds (Fu, Bonk, Lang,...)

Surfaces with singularities

Lipschitz parametrization $f: \mathbb{C} \rightarrow X \Longrightarrow \ell(f \circ \gamma) \leq C \ell(\gamma)$
\Longrightarrow Every two points can be joined with a curve of finite length

(1) Finite area
(2) Smooth except for one point P
(3) Every curve passing through P has infinite length

No Lipschitz parametrization

Quasiconformal and quasisymmetric maps

$f: X \rightarrow Y$ homeomorphism between metric spaces
Quasiconformal: preserves shapes infinitesimally:

Quasisymmetric: preserves shapes in all scales.

Quasisymmetric uniformization

Theorem (Bonk-Kleiner 2002)

If a metric sphere X is Ahlfors 2-regular and LLC, then there exists a quasisymmetric map $f: \widehat{\mathbb{C}} \rightarrow X$.

- Ahlfors 2-regular: $C^{-1} r^{2} \leq \mu(B(x, r)) \leq C r^{2}$
- LLC (Linearly Locally Connected): no cusps, thin bottlenecks, dense wrinkles

Quasisymmetric uniformization

Methods of proof:

- Through circle packings (Bonk-Kleiner)
- Through quasiconformal uniformization (Rajala)
- Through solution to Plateau's problem (Lytchak-Wenger)

Generalizations to other surfaces:

- Plane, disk, half-plane (Wildrick)
- Compact surfaces (Geyer-Wildrick, Ikonen, Fitzi-Meier)
- Domains (Merenkov-Wildrick, Rajala-Rasimus, Rehmert)

Geometric definition of quasiconformality

X metric surface of locally finite area (Hausdorff 2-measure)
Γ family of curves in X
$\rho: X \rightarrow[0, \infty]$ is admissible for Γ if $\int_{\gamma} \rho d s \geq 1$ for all $\gamma \in \Gamma$
$\operatorname{Mod} \Gamma=\inf _{\rho} \int_{X} \rho^{2} d \mathscr{H}^{2} \longrightarrow$ Outer measure on curve families

f conformal: $\operatorname{Mod} \Gamma=\operatorname{Mod} f(\Gamma)$
f quasiconformal: $K^{-1} \operatorname{Mod} \Gamma \leq \operatorname{Mod} f(\Gamma) \leq K \operatorname{Mod} \Gamma$

Properties of modulus in the plane

$\Gamma(Q)$

$\operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^{*}(Q)=1$
$\operatorname{Mod} \Gamma=0$
$\operatorname{Mod} \Gamma>0$

Quasiconformal uniformization

(Quasi)conformal parametrization $f: \mathbb{C} \rightarrow X$
The family of (non-constant) curves passing through each point has modulus zero

(1) Finite area
(2) Smooth except for one point P
(3) The family of curves passing through P has positive modulus.

No quasiconformal parametrization

Quasiconformal uniformization

> Magic Ball Designed by: Yuri Shumakov Presented by: Jo Nakashima
(1) Length-isometric to cylinder outside poles
(2) The family of curves through poles has positive modulus
(3) Not quasiconformal to sphere

Question

Is this the only enemy?

Quasiconformal uniformization

Question

Is this the only enemy?
Let $C \subset \mathbb{R}^{2}$ Cantor set. Set $\omega=\chi_{\mathbb{R}^{2} \backslash C}$.

$$
d_{\omega}(x, y)=\inf _{\gamma} \int_{\gamma} \omega d s
$$

$\left(\mathbb{R}^{2}, d_{\omega}\right)$ is homeomorphic to \mathbb{R}^{2}
If $|C|>0$ then $\left(\mathbb{R}^{2}, d_{\omega}\right)$ is not quasiconformal to \mathbb{R}^{2}
Near density points

$$
\operatorname{Mod} \Gamma(Q) \operatorname{Mod} \Gamma^{*}(Q) \rightarrow \infty
$$

Quasiconformal uniformization

Theorem (Rajala 2017)

Let X be a metric sphere of finite area. There exists a quasiconformal map $f: \widehat{\mathbb{C}} \rightarrow X$ if and only if X is reciprocal.

Reciprocity conditions:
(1) The family of non-constant curves passing through each point x has modulus zero.

$$
\lim _{r \rightarrow 0} \operatorname{Mod} \Gamma(B(x, r), X \backslash B(x, R))=0
$$

(2) For each topological quadrilateral Q :

$$
\kappa^{-1} \leq \operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^{*}(Q) \leq \kappa
$$

Quasiconformal uniformization

- If X is reciprocal, there exists f with
$\frac{\pi}{4} \operatorname{Mod} \Gamma \leq \operatorname{Mod} f(\Gamma) \leq \frac{\pi}{2} \operatorname{Mod} \Gamma$ (Rajala, Romney)
Optimal constants attained by id : $\mathbb{R}^{2} \rightarrow X=\left(\mathbb{R}^{2}, \ell^{\infty}\right)$
- X Ahlfors 2-regular and LLC
\Longrightarrow Quasiconformal maps are quasisymmetric
\Longrightarrow Bonk-Kleiner Theorem
- For every surface
$\kappa^{-1} \leq \operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^{*}(Q)$ (Rajala-Romney)
$\kappa^{-1}=(\pi / 4)^{2}$ (Eriksson-Bique-Poggi-Corradini)
- X is reciprocal if and only if $\operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^{*}(Q) \leq \kappa($ N.-Romney $)$
- If the modulus of curves passing through each point is zero, then X is not necessarily reciprocal. (N.-Romney)

Uniformization of general surfaces

Problem (Rajala-Wenger)

Let X be a metric sphere of finite area. Does there exist a weakly quasiconformal map $f: \widehat{\mathbb{C}} \rightarrow X$?

Weakly quasiconformal map:
(1) Uniform limit of homeomorphisms
(2) $\operatorname{Mod} \Gamma \leq K \operatorname{Mod} f(\Gamma)$

Theorem (N.-Romney 2021, Meier-Wenger 2021)
Yes for length surfaces.

Theorem (N.-Romney 2022)
Yes for all surfaces.

Example

(1) f is weakly quasiconformal
(2) f is not injective in black balls around poles
(3) f is conformal outside black balls

Weakly quasiconformal uniformization

Theorem (N.-Romney 2022)

Let X be a metric surface of locally finite area.

- There exists a complete Riemannian surface Z of constant curvature.
- Z is homeomorphic to X.
- There exists a $\frac{4}{\pi}$-WQC map $f: Z \rightarrow X$.
- f is QC if and only if X is reciprocal \Longrightarrow Rajala's Theorem
- X is Ahlfors 2-regular and LLC sphere
$\Longrightarrow f$ is quasisymmetric
\Longrightarrow Bonk-Kleiner Theorem

Approximation by polyhedral surfaces

Theorem (N.-Romney 2021, 2022)

Let X be a metric sphere of finite area. There exists a sequence X_{n} of polyhedral spheres and approximately isometric homeomorphisms $f_{n}: X_{n} \rightarrow X$ such that

$$
\limsup _{n \rightarrow \infty}\left|f_{n}^{-1}(A)\right| \leq K|A|
$$

for each compact set $A \subset X$, where K is a uniform constant.

- Consider polyhedral spheres $X_{n} \rightarrow X$
- Orientable polyhedral surfaces are Riemann surfaces
- Classical uniformization theorem \Longrightarrow There exist conformal parametrizations $g_{n}: \widehat{\mathbb{C}} \rightarrow X_{n}$.
- Area bounds on X_{n}
- g_{n} is equicontinuous
- $\left|D g_{n}\right|$ bounded in L^{2}
- The maps g_{n} (sub)converge to a WQC map $g: \widehat{\mathbb{C}} \rightarrow X$.

Proof of WQC uniformization

Proof scheme fails for general surfaces!

$g_{n}: \mathbb{D} \rightarrow X_{n}$ conformal maps do not converge to WQC map $g: \mathbb{D} \rightarrow X$

Approximation by polyhedral surfaces

Theorem (N.-Romney 2021, 2022)

Let X be a metric surface of locally finite area. There exists a sequence X_{n} of polyhedral surfaces and approximately isometric embeddings $f_{n}: X_{n} \rightarrow X$ such that

$$
\limsup _{n \rightarrow \infty}\left|f_{n}^{-1}(A)\right| \leq K|A|
$$

for each compact set $A \subset X$, where K is a uniform constant. Moreover, there exist approximately isometric retractions $R_{n}: X \rightarrow f_{n}\left(X_{n}\right)$.

$$
X_{n}=\mathbb{D} \backslash[0,1] \times\{0\}
$$

$X=\mathbb{D}$

There exists no retraction $R: X \rightarrow X_{n}$

Conjecture: Optimal constant $K=4 / \pi$ attained by $X=\left(\mathbb{R}^{2}, \ell^{\infty}\right)$.

Proof of polyhedral approximation

For simplicity assume that X has a length metric:

$$
d(x, y)=\inf _{\gamma} \ell(\gamma)
$$

Step 1: Triangulate X

Theorem (Creutz-Romney 2022)

Let X be a length surface with polygonal boundary. For each $\varepsilon>0$ there exists a convex triangulation of X with mesh $<\varepsilon$.

Triangulation:

- $X=\cup_{T \in \mathscr{T}} T$, non-overlapping, locally finite
- T Jordan region, ∂T union of three geodesics
- Edges and vertices do not match exactly

Idea: Replace each triangular region T with a polyhedral surface S such that $|S| \leq C|T|$ and $\operatorname{diam}(S) \leq C \operatorname{diam}(T)$

Step 2: Bi-Lipschitz embedding of triangles into the plane

Metric triangle $\Delta=\partial T$: homeomorphic to \mathbb{S}^{1}, union of three non-overlapping geodesics

Proposition (N.-Romney)

Every metric triangle is 4-bi-Lipschitz embeddable into \mathbb{R}^{2}.

Idea: Construct polyhedral surface S in the plane and glue it to the surface X via F

Step 3: Area estimate

Theorem

Let T be a metric closed disk with $\Delta=\partial T$. If $F: \Delta \rightarrow \partial \Omega \subset \mathbb{R}^{2}$ is an L-Lipschitz homeomorphism, then

$$
|\Omega| \leq \frac{4 L^{2}}{\pi}|T| .
$$

Non-length surfaces

We define the extended length metric $\bar{d}: X \times X \rightarrow[0, \infty]$

$$
\bar{d}(x, y)=\inf _{\gamma} \ell_{d}(\gamma)
$$

- $d \leq \bar{d} \leq \infty$
- If X has locally finite area, then $\bar{d}(x, y)<\infty$ for a dense set of $x, y \in X$
- \bar{d} might not be continuous with respect to d

Idea: Apply previous proof strategy to the "length metric" \bar{d}

Applications of uniformization

(1) Simplification of definition of reciprocal surfaces (N.-Romney)

Theorem (N.-Romney)

A metric surface of locally finite area is reciprocal if and only if there exists $\kappa>0$ such that

$$
\operatorname{Mod} \Gamma(Q) \cdot \operatorname{Mod} \Gamma^{*}(Q) \leq \kappa
$$

for each quadrilateral Q.

Applications of uniformization

(2) Coarea inequality on surfaces without assumptions (Esmayli-Ikonen-Rajala, Meier-N.)

Theorem (Esmayli-Ikonen-Rajala 2022)

Let X be a metric surface of locally finite area and $u: X \rightarrow \mathbb{R}$ be a monotone function with weak upper gradient $\rho \in L_{\text {loc }}^{p}(X)$, $p \in[1, \infty]$. Then

$$
\iint_{u^{-1}(t)} g d \not \mathscr{H}^{1} d t \leq C \int g \rho d \mathscr{H}^{2}
$$

for each Borel function $g: X \rightarrow[0, \infty]$.

. Can fail for Lipschitz functions! (True for smooth X)

Applications of uniformization

(3) Lipschitz-Volume rigidity (Meier-N.)

Theorem (Folklore)

Let X, Y be closed Riemannian n-manifolds with $|X|=|Y|$. Then every 1-Lipschitz map from X onto Y is an isometry.

Theorem (Meier-N. 2023)

Let X be a closed metric surface and Y be a closed Riemannian surface with $|X|=|Y|$. Then every 1-Lipschitz map from X onto Y is an isometry.

Open problems

Problem

Classify metric surfaces of locally finite area up to QC maps.
Is there a Riemannian surface Z and a degenerate conformal weight ω such that $\left(Z, d_{\omega}\right)$ is QC to X ?

$$
d_{\omega}(x, y)=\inf _{\gamma} \int_{\gamma} \omega d s
$$

Problem (Le Donne)

If X is a length surface, is there a length-isometric/BLD embedding into \mathbb{R}^{N} ?

Yes for Heisenberg group (Le Donne)

Thank you!

Happy birthday Mario!

