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The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers,

uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.

The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute).

POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA:

the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity

in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence.

Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez

=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0,

Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z

E. Zikkos Short version



The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence Λ = {λn}∞n=1, of positive real
numbers, uniformly separated and having Density d ,

λn+1 − λn > c > 0, lim
n→∞

n

λn
= d <∞.

consider the class of Dirichlet series of the form
∞∑
n=1

cneλnz , lim sup
n→∞

log |cn|
λn

= ξ ∈ R.

The series is analytic in the left half-plane <z < −ξ, it converges
uniformly on compact subsets, and it diverges for all z such <z > −ξ.
The line <z = −ξ is called the Abscissa of Convergence (pointwise and
absolute). POLYA: the series has at least One singularity in every
open interval whose length Exceeds 2πd and lies on the abscissa of
convergence. Example (trivial):

ez

1− ez
=
∞∑
n=1

enz , <z < 0, Density = 1.

Singularities at the points 2kπi , k ∈ Z
E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity,

AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded.

We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:

(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz

associated to a multiplicity sequence Λ = {λn, µn}∞n=1

{λn, µn}∞n=1 := {λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1−times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
µ2−times

, . . . , λk , λk , . . . , λk︸ ︷︷ ︸
µk−times

, . . . }

{λn}∞n=1 is a strictly increasing sequence of positive real numbers
diverging to infinity, AND {µn}∞n=1 is a sequence of positive integers,
Not Necessarily Bounded. We impose two conditions:
(A) Λ has Density d counting multiplicities

lim
t→∞

nΛ(t)

t
= d <∞, nΛ(t) =

∑
λn≤t

µn

(if µn = 1 for all n ∈ N then n/λn → d)

(B) λn+1 − λn > c > 0, (Uniformly Separated).

E. Zikkos Short version



Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then Λ = {λn, µn}∞n=1 satisfies

lim
n→∞

log n

λn
= 0 lim

n→∞

µn

λn
= 0.

Valiron (1929) : consider the series

g(z) =
∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz , Cn = max{|cn,k | : k = 0, 1, 2, . . . , µn−1}

lim sup
n→∞

log Cn

λn
= ξ ∈ R, P−ξ := {z : <z < −ξ}.

Then g(z) is an analytic function in the left half-plane P−ξ converging
uniformly on compact subsets. We call the line <z = −ξ the
abscissa of convergence for g(z).
Question : is it True that in every interval having length greater than
2πd on the line <z = −ξ, the series has at least One singularity?
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Positive Answers to the Singularity Question

Suppose that Λ = {λn, µn} satisfies

(A) Λ has Density d : lim
t→∞

∑
λn≤t µn

t
= d <∞,

(B) λn+1 − λn > c > 0, (Uniformly Separated).

I Zikkos (2005 Complex Variables): If Λ belongs to a certain class
denoted by U(d , 0), with a restriction on the coefficients, the answer
is YES.

I O. A. Krivosheeva (2012 St. Petersburg Math. J. ):
If the Krivosheev characteristic SΛ is Equal to 0, then the answer is
YES.
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Another Positive Answer

I Zikkos (2018):

If Λ belongs to the class U(d , 0), then the
Krivosheev characteristic SΛ = 0, hence the answer is YES.
Examples in U(d , 0) :
(1) If (A) and (B) hold and µn = O(1), then Λ ∈ U(d , 0).
(2) Let {pn} be the prime numbers and let µn = pn+1 − pn.
Then Λ = {pn, µn} belongs to the class U(1, 0).

Theorem
The Taylor-Dirichlet series

g(z) =
∞∑
n=1

(
µn−1∑
k=0

zk

)
epnz , cn,k ∈ C

defines an analytic function in the half-plane

{z : <z < 0}

and it has at least One singularity in every open interval of length
exceeding 2π and lying on the Imaginary axis.
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A Negative Answer

Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity
sequence Λ = {λn, µn} with µn →∞, such that

(A) Λ has Density d : lim
t→∞

∑
λn≤t µn

t
= d <∞,

(B) λn+1 − λn > c > 0, (Uniformly Separated).

(C ) SΛ < 0

and hence (Krivosheeva 2012 St. Petersburg Math. J.):
there exists a Taylor-Dirichlet series such that it Can be Continued
Analytically across the abscissa of convergence.
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The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :

Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .

For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,

such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn

or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}.

Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The class U(d , 0)

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence {an} of positive real numbers,
having density d with uniformly separated terms

n/an → d , an+1 − an > c > 0.

Choose two positive numbers α < 1, δ < c .
For each term an consider the closed disk

B(an, |an|α) = {z : |z − an| ≤ aαn }.

Choose a point in B(an, |an|α) ∩R, call it bn, in an almost arbitrary way,
such that

for all n 6= m either (I ) bm = bn or (II ) |bm − bn| ≥ δ.

Rename {bn} into Λ = {λn, µn}. Then we say that Λ ∈ U(d , 0).

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3

R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



The Class U(d , 0)

an

R = aαn

bn

an+1

R = aαn+1

bn+1

an+2

R = aαn+2

= bn+2

an+3 R = aαn+3

= bn+3

E. Zikkos Short version



Singularities of Taylor-Dirichlet series

Theorem A
Let the multiplicity-sequence Λ = {λn, µn}∞n=1 belong to the class U(d , 0)
for some d > 0, and consider the Taylor-Dirichlet series

g(z) =
∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz , cn,k ∈ C

lim sup
n→∞

log Cn

λn
= ξ ∈ R, where Cn = max{|cn,k | : k = 0, 1, . . . , µn−1}.

Then g(z) defines an analytic function in the half-plane {z : <z < −ξ}
and it has at least One singularity in every open interval of length
exceeding 2πd and lying on the line <z = −ξ.
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Second Goal

Given Λ = {λn, µn}∞n=1 in U(d , 0)
Characterize the closed span of the exponential system

EΛ = {zkeλnz : n ∈ N, k = 0, 1, . . . , µn − 1}

in Lp(l) spaces where l is a simple closed rectifiable curve in C, and Gl is
the domain bounded by the curve.
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If f is in the closed span of EΛ in Lp(l), then f is in the Lp closure of
polynomials, hence f ∈ E p(Gl).
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Curve l is surrounded by a rectangle whose height is less
than 2πd

Height < 2πd

Theorem B
Suppose the Domain Gl bounded by the curve l is a Smirnov domain.
Suppose also that Λ = {λn, µn} has Density d. Then the closed span of
the exponential system EΛ in the space Lp(l) for p ≥ 1 Coincides with
the Smirnov space E p(Gl).
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Proof

It is enough to show that E p(Gl) is a subspace of the closed span of the
exponential system EΛ in Lp(l).

Since Gl is a Smirnov domain we have to show that the Lp closure of
polynomials is a subspace of the closed span of the exponential system
EΛ in Lp(l).
Let H(K ) be the space of functions analytic in the rectangle K with the
topology of uniform convergence on compact subsets.
( B. Ya. Levin , A. F. Leont’ev): Since the density of Λ is d , AND the
height of the rectangle is less than 2πd , then the system EΛ is
Complete in H(K ).
Hence polynomials are approximated uniformly on the curve l by
exponential polynomials.
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The curve l is Surrounding a rectangle whose height is 2πd

Height of rectangle ≥ 2πd

Theorem C
Suppose that Λ = {λn, µn} has Density d. Then the closed span of the
exponential system EΛ in the space Lp(l) for p ≥ 1 is a Proper subspace
of the Smirnov space E p(Gl). For any λ /∈ {λn}, the function eλz does
not belong to the closed span of the system.

Question: Can we characterize the closed span of the exponential system
EΛ in the space Lp(l) for p ≥ 1?
We give an answer when Λ ∈ U(d , 0).
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Characterizing the closed span of EΛ

Let Λ belong to the class U(d , 0).
Let EΛ = {zkeλnz : n ∈ N, k = 0, 1, . . . , µn − 1}.

Curve ld , Domain Gld

length > 2πd

Sld the set of all such line segments

qld := sup{<z : ∀ z ∈ Sld}

If f ∈ span(EΛ) in Lp(ld),

f extends analytically in <z < qld

as a

Taylor-Dirichlet series
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The closed span of EΛ in Lp(ld )

Theorem D
Let Λ = {λn, µn}∞n=1 ∈ U(d , 0) and consider an ld curve and its qld

constant.

I Then every function f belonging to the closed span of EΛ in Lp(ld)
for p ≥ 1, not only extends analytically in the domain Gld and
belongs to the Smirnov space E p(Gld ).

I But it is also extended analytically in the half-plane
Hqld

:= {z : <z < qld}, admitting a unique Taylor-Dirichlet series
representation of the form

g(z) =
∞∑
n=1

(
µn−1∑
k=0

cn,kzk

)
eλnz , cn,k ∈ C, ∀ z ∈ Hqld

with the series converging uniformly on compact subsets of Hqld
.
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Crucial Tool: Distances in Lp(ld )

Suppose that Λ = {λn, µn}∞n=1 belongs to the class U(d , 0) and consider
an ld curve and its qld constant. Let

EΛ = {zkeλnz : n ∈ N, k = 0, 1, . . . , µn − 1}.

Let pn,k(z) := zkeλnz And EΛn,k
:= EΛ \ {pn,k}.

Define the Distance between pn,k and the closed span of EΛn,k
in Lp(ld)

Dp,n,k := inf
g∈span(EΛn,k

)
||pn,k − g ||Lp(ld )

Theorem E
For every ε > 0 there is a constant uε > 0, independent of p ≥ 1, n ∈ N
and k = 0, 1, . . . , µn − 1, but depending on Λ the curve ld , so that

Dp,n,k ≥ uεe
(qld−ε)λn .
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A Biorthogonal sequence to EΛ in E 2(Gld ) and a solution
to a Moment Problem

Theorem F

I Let Λ = {λn, µn}∞n=1 belong to the class U(d , 0) and consider an ld
curve and its qld constant.

Then there exists a family of functions

{rn,k ∈ E 2(Gld ) : n ∈ N, k = 0, 1, . . . , µn − 1}

such that this family is the Unique Biorthogonal sequence to the
system EΛ in E 2(Gld ), belonging to span(EΛ) in E 2(Gld ).

I Moreover, for every ε > 0 there is a constant mε > 0, independent
of n and k, but depending on Λ and the curve ld , so that

||rn,k ||E 2(Gld
) ≤ mεe

(−qld +ε)λn , ∀ n ∈ N, k = 0, 1, . . . , µn − 1.
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I Let {dn,k : n ∈ N, k = 0, 1, . . . , µn − 1} be a doubly-indexed
sequence of complex numbers such that

lim sup
n→∞

log An

λn
< qld where An = max{|dn,k | : k = 0, 1, . . . , µn−1}.

Then the function

f (z) :=
∞∑
n=1

(
µn−1∑
k=0

dn,k rn,k(z)

)

belongs to E 2(Gld ) and it is a solution to the moment problem∫
ld

zkeλnz f (z) |dz | = dn,k ∀ n ∈ N and k = 0, 1, 2, . . . µn − 1.
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