# The closed span of an exponential system in $L^{p}$ spaces on simple closed rectifiable curves in the complex plane and Pólya singularity results for Taylor-Dirichlet series 

Elias Zikkos
Cyprus Ministry of Education and Culture

New Developments in Complex Analysis and Function Theory Crete 2018, July 2

## The Polya Theorem for Exponential Dirichlet Series

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers,

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$.

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute).

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA:

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity in every open interval whose length Exceeds $2 \pi d$ and lies on the abscissa of convergence.

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity in every open interval whose length Exceeds $2 \pi d$ and lies on the abscissa of convergence. Example (trivial):

$$
\frac{e^{z}}{1-e^{z}}
$$

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity in every open interval whose length Exceeds $2 \pi d$ and lies on the abscissa of convergence. Example (trivial):

$$
\frac{e^{z}}{1-e^{z}}=\sum_{n=1}^{\infty} e^{n z}, \quad \Re z<0
$$

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity in every open interval whose length Exceeds $2 \pi d$ and lies on the abscissa of convergence. Example (trivial):

$$
\frac{e^{z}}{1-e^{z}}=\sum_{n=1}^{\infty} e^{n z}, \quad \Re z<0, \quad \text { Density }=1
$$

## The Polya Theorem for Exponential Dirichlet Series

Given a strictly increasing sequence $\Lambda=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, of positive real numbers, uniformly separated and having Density $d$,

$$
\lambda_{n+1}-\lambda_{n}>c>0, \quad \lim _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=d<\infty
$$

consider the class of Dirichlet series of the form

$$
\sum_{n=1}^{\infty} c_{n} e^{\lambda_{n} z}, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|c_{n}\right|}{\lambda_{n}}=\xi \in \mathbb{R}
$$

The series is analytic in the left half-plane $\Re z<-\xi$, it converges uniformly on compact subsets, and it diverges for all $z$ such $\Re z>-\xi$. The line $\Re z=-\xi$ is called the Abscissa of Convergence (pointwise and absolute). POLYA: the series has at least One singularity in every open interval whose length Exceeds $2 \pi d$ and lies on the abscissa of convergence. Example (trivial):

$$
\frac{e^{z}}{1-e^{z}}=\sum_{n=1}^{\infty} e^{n z}, \quad \Re z<0, \quad \text { Density }=1
$$

Singularities at the points $2 k \pi i, k \in \mathbb{Z}$

## First Goal: Generalizing The Polya Theorem

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity,

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded.

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions:

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions:
(A) $\wedge$ has Density $d$ counting multiplicities

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions:
(A) $\wedge$ has Density $d$ counting multiplicities

$$
\lim _{t \rightarrow \infty} \frac{n_{\wedge}(t)}{t}=d<\infty, \quad n_{\Lambda}(t)=\sum_{\lambda_{n} \leq t} \mu_{n}
$$

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions:
(A) $\wedge$ has Density $d$ counting multiplicities

$$
\lim _{t \rightarrow \infty} \frac{n_{\Lambda}(t)}{t}=d<\infty, \quad n_{\Lambda}(t)=\sum_{\lambda_{n} \leq t} \mu_{n}
$$

(if $\mu_{n}=1$ for all $n \in \mathbb{N}$ then $n / \lambda_{n} \rightarrow d$ )

## First Goal: Generalizing The Polya Theorem

We consider Taylor-Dirichlet series

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}
$$

associated to a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$

$$
\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}:=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}}_{\mu_{1}-\text { times }}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots, \lambda_{2}}_{\mu_{2}-\text { times }}, \ldots, \underbrace{\lambda_{k}, \lambda_{k}, \ldots, \lambda_{k}}_{\mu_{k}-\text { times }}, \ldots\}
$$

$\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ is a strictly increasing sequence of positive real numbers diverging to infinity, AND $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions:
(A) $\wedge$ has Density $d$ counting multiplicities

$$
\lim _{t \rightarrow \infty} \frac{n_{\Lambda}(t)}{t}=d<\infty, \quad n_{\Lambda}(t)=\sum_{\lambda_{n} \leq t} \mu_{n}
$$

(if $\mu_{n}=1$ for all $n \in \mathbb{N}$ then $n / \lambda_{n} \rightarrow d$ )
(B) $\quad \lambda_{n+1}-\lambda_{n}>c>0, \quad$ (Uniformly Separated).

## Region of Convergence, Taylor-Dirichlet series:

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0
$$

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0 .
$$

Valiron (1929) :

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0 .
$$

Valiron (1929) : consider the series

$$
\begin{gathered}
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1,2, \ldots, \mu_{n}-1\right\} \\
\operatorname{limsups}_{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad P_{-\xi}:=\{z: \Re z<-\xi\} .
\end{gathered}
$$

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0
$$

Valiron (1929) : consider the series

$$
\begin{gathered}
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1,2, \ldots, \mu_{n}-1\right\} \\
\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad P_{-\xi}:=\{z: \Re z<-\xi\} .
\end{gathered}
$$

Then $g(z)$ is an analytic function in the left half-plane $P_{-\xi}$ converging uniformly on compact subsets.

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0
$$

Valiron (1929) : consider the series

$$
\begin{gathered}
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1,2, \ldots, \mu_{n}-1\right\} \\
\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad P_{-\xi}:=\{z: \Re z<-\xi\} .
\end{gathered}
$$

Then $g(z)$ is an analytic function in the left half-plane $P_{-\xi}$ converging uniformly on compact subsets. We call the line $\Re z=-\xi$ the abscissa of convergence for $g(z)$.

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0
$$

Valiron (1929) : consider the series

$$
\begin{gathered}
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1,2, \ldots, \mu_{n}-1\right\} \\
\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad P_{-\xi}:=\{z: \Re z<-\xi\} .
\end{gathered}
$$

Then $g(z)$ is an analytic function in the left half-plane $P_{-\xi}$ converging uniformly on compact subsets. We call the line $\Re z=-\xi$ the abscissa of convergence for $g(z)$.
Question :

## Region of Convergence, Taylor-Dirichlet series:

Assuming (A) and (B) then $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=0 \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{\lambda_{n}}=0
$$

Valiron (1929) : consider the series

$$
\begin{gathered}
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1,2, \ldots, \mu_{n}-1\right\} \\
\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad P_{-\xi}:=\{z: \Re z<-\xi\} .
\end{gathered}
$$

Then $g(z)$ is an analytic function in the left half-plane $P_{-\xi}$ converging uniformly on compact subsets. We call the line $\Re z=-\xi$ the abscissa of convergence for $g(z)$.
Question : is it True that in every interval having length greater than $2 \pi d$ on the line $\Re z=-\xi$, the series has at least One singularity?

## Positive Answers to the Singularity Question

## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

> (A) $\quad \wedge$ has Density $d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty$,
> (B) $\quad \lambda_{n+1}-\lambda_{n}>c>0, \quad$ (Uniformly Separated).

## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

$$
\begin{aligned}
& \text { (A) } \quad \Lambda \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty, \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad \text { (Uniformly Separated). }
\end{aligned}
$$

- Zikkos (2005 Complex Variables):


## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

$$
\begin{aligned}
& \text { (A) } \quad \wedge \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty, \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad(\text { Uniformly Separated }) .
\end{aligned}
$$

- Zikkos (2005 Complex Variables): If $\wedge$ belongs to a certain class denoted by $U(d, 0)$, with a restriction on the coefficients, the answer is YES.


## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

$$
\begin{aligned}
& \text { (A) } \quad \wedge \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty, \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad(\text { Uniformly Separated }) .
\end{aligned}
$$

- Zikkos (2005 Complex Variables): If $\wedge$ belongs to a certain class denoted by $U(d, 0)$, with a restriction on the coefficients, the answer is YES.
- O. A. Krivosheeva (2012 St. Petersburg Math. J. ):


## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

$$
\begin{aligned}
& \text { (A) } \quad \wedge \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty, \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad \text { (Uniformly Separated). }
\end{aligned}
$$

- Zikkos (2005 Complex Variables): If $\wedge$ belongs to a certain class denoted by $U(d, 0)$, with a restriction on the coefficients, the answer is YES.
- O. A. Krivosheeva (2012 St. Petersburg Math. J. ): If the Krivosheev characteristic $S_{\Lambda}$ is Equal to 0 ,


## Positive Answers to the Singularity Question

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ satisfies

$$
\begin{aligned}
& \text { (A) } \quad \wedge \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty, \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad \text { (Uniformly Separated). }
\end{aligned}
$$

- Zikkos (2005 Complex Variables): If $\wedge$ belongs to a certain class denoted by $U(d, 0)$, with a restriction on the coefficients, the answer is YES.
- O. A. Krivosheeva (2012 St. Petersburg Math. J. ): If the Krivosheev characteristic $S_{\Lambda}$ is Equal to 0 , then the answer is YES.


## Another Positive Answer

- Zikkos (2018):


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$,


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES.


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers and let $\mu_{n}=p_{n+1}-p_{n}$.


## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers and let $\mu_{n}=p_{n+1}-p_{n}$.

Then $\Lambda=\left\{p_{n}, \mu_{n}\right\}$ belongs to the class $U(1,0)$.

## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers and let $\mu_{n}=p_{n+1}-p_{n}$. Then $\Lambda=\left\{p_{n}, \mu_{n}\right\}$ belongs to the class $U(1,0)$.

Theorem
The Taylor-Dirichlet series

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} z^{k}\right) e^{p_{n} z}, \quad c_{n, k} \in \mathbb{C}
$$

defines an analytic function in the half-plane

$$
\{z: \Re z<0\}
$$

## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers and let $\mu_{n}=p_{n+1}-p_{n}$. Then $\Lambda=\left\{p_{n}, \mu_{n}\right\}$ belongs to the class $U(1,0)$.

Theorem
The Taylor-Dirichlet series

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} z^{k}\right) e^{p_{n} z}, \quad c_{n, k} \in \mathbb{C}
$$

defines an analytic function in the half-plane

$$
\{z: \Re z<0\}
$$

and it has at least One singularity

## Another Positive Answer

- Zikkos (2018): If $\Lambda$ belongs to the class $U(d, 0)$, then the Krivosheev characteristic $S_{\Lambda}=0$, hence the answer is YES. Examples in $U(d, 0)$ :
(1) If (A) and (B) hold and $\mu_{n}=O(1)$, then $\Lambda \in U(d, 0)$.
(2) Let $\left\{p_{n}\right\}$ be the prime numbers and let $\mu_{n}=p_{n+1}-p_{n}$. Then $\Lambda=\left\{p_{n}, \mu_{n}\right\}$ belongs to the class $U(1,0)$.

Theorem
The Taylor-Dirichlet series

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} z^{k}\right) e^{p_{n} z}, \quad c_{n, k} \in \mathbb{C}
$$

defines an analytic function in the half-plane

$$
\{z: \Re z<0\}
$$

and it has at least One singularity in every open interval of length exceeding $2 \pi$ and lying on the Imaginary axis.

## A Negative Answer

## A Negative Answer

## Zikkos ( Ufa Math J.):

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$,

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$, there exists a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ with $\mu_{n} \rightarrow \infty$, such that

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$, there exists a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ with $\mu_{n} \rightarrow \infty$, such that

$$
\begin{aligned}
& \text { (A) } \quad \Lambda \text { has Density } d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty \\
& \text { (B) } \quad \lambda_{n+1}-\lambda_{n}>c>0, \quad \text { (Uniformly Separated). }
\end{aligned}
$$

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$, there exists a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ with $\mu_{n} \rightarrow \infty$, such that

> (A) $\wedge$ has Density $d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty$,
> (B) $\quad \lambda_{n+1}-\lambda_{n}>c>0, \quad$ (Uniformly Separated).
(C) $S_{\Lambda}<0$

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$, there exists a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ with $\mu_{n} \rightarrow \infty$, such that

> (A) $\quad \Lambda$ has Density $d: \quad \lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty$
> (B) $\quad \lambda_{n+1}-\lambda_{n}>c>0, \quad$ (Uniformly Separated).
(C) $\quad S_{\Lambda}<0$
and hence (Krivosheeva 2012 St. Petersburg Math. J.):

## A Negative Answer

Zikkos ( Ufa Math J.): for every $d \geq 0$, there exists a multiplicity sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ with $\mu_{n} \rightarrow \infty$, such that
(A) $\wedge$ has Density d: $\lim _{t \rightarrow \infty} \frac{\sum_{\lambda_{n} \leq t} \mu_{n}}{t}=d<\infty$,
(B) $\quad \lambda_{n+1}-\lambda_{n}>c>0, \quad$ (Uniformly Separated).

$$
\text { (C) } \quad S_{\wedge}<0
$$

and hence (Krivosheeva 2012 St. Petersburg Math. J.): there exists a Taylor-Dirichlet series such that it Can be Continued Analytically across the abscissa of convergence.

The class $U(d, 0)$

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0
$$

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$. For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.
For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

Choose a point in $\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right) \cap \mathbb{R}$, call it $b_{n}$, in an almost arbitrary way,

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.
For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

Choose a point in $\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right) \cap \mathbb{R}$, call it $b_{n}$, in an almost arbitrary way, such that
for all $n \neq m$ either $(I) b_{m}=b_{n}$

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.
For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

Choose a point in $\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right) \cap \mathbb{R}$, call it $b_{n}$, in an almost arbitrary way, such that
for all $n \neq m$ either (I) $b_{m}=b_{n}$ or (II) $\left|b_{m}-b_{n}\right| \geq \delta$.

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.
For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

Choose a point in $\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right) \cap \mathbb{R}$, call it $b_{n}$, in an almost arbitrary way, such that

$$
\text { for all } n \neq m \text { either (I) } b_{m}=b_{n} \text { or (II) }\left|b_{m}-b_{n}\right| \geq \delta \text {. }
$$

Rename $\left\{b_{n}\right\}$ into $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$.

## The class $U(d, 0)$

Zikkos (2005 Complex Variables, 2010 CMFT) :
Consider a strictly increasing sequence $\left\{a_{n}\right\}$ of positive real numbers, having density $d$ with uniformly separated terms

$$
n / a_{n} \rightarrow d, \quad a_{n+1}-a_{n}>c>0 .
$$

Choose two positive numbers $\alpha<1, \quad \delta<c$.
For each term $a_{n}$ consider the closed disk

$$
\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right)=\left\{z:\left|z-a_{n}\right| \leq a_{n}^{\alpha}\right\} .
$$

Choose a point in $\bar{B}\left(a_{n},\left|a_{n}\right|^{\alpha}\right) \cap \mathbb{R}$, call it $b_{n}$, in an almost arbitrary way, such that

$$
\text { for all } n \neq m \text { either (I) } b_{m}=b_{n} \text { or (II) }\left|b_{m}-b_{n}\right| \geq \delta \text {. }
$$

Rename $\left\{b_{n}\right\}$ into $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$. Then we say that $\Lambda \in U(d, 0)$.

## The Class $U(d, 0)$

The Class $U(d, 0)$

## $a_{n}$

## The Class $U(d, 0)$



## Singularities of Taylor-Dirichlet series

## Singularities of Taylor-Dirichlet series

Theorem A
Let the multiplicity-sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belong to the class $U(d, 0)$ for some $d>0$, and consider the Taylor-Dirichlet series

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad c_{n, k} \in \mathbb{C}
$$

$\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad$ where $\quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1, \ldots, \mu_{n}-1\right\}$.

## Singularities of Taylor-Dirichlet series

Theorem A
Let the multiplicity-sequence $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belong to the class $U(d, 0)$ for some $d>0$, and consider the Taylor-Dirichlet series

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad c_{n, k} \in \mathbb{C}
$$

$\limsup _{n \rightarrow \infty} \frac{\log C_{n}}{\lambda_{n}}=\xi \in \mathbb{R}, \quad$ where $\quad C_{n}=\max \left\{\left|c_{n, k}\right|: k=0,1, \ldots, \mu_{n}-1\right\}$.
Then $g(z)$ defines an analytic function in the half-plane $\{z: \Re z<-\xi\}$ and it has at least One singularity in every open interval of length exceeding $2 \pi d$ and lying on the line $\Re z=-\xi$.

## Second Goal

## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$

## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$
Characterize the closed span of the exponential system

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$
Characterize the closed span of the exponential system

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

in $L^{P}(I)$ spaces where $I$ is a simple closed rectifiable curve in $\mathbb{C}$, and $G_{l}$ is the domain bounded by the curve.


## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$
Characterize the closed span of the exponential system

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

in $L^{P}(I)$ spaces where $I$ is a simple closed rectifiable curve in $\mathbb{C}$, and $G_{l}$ is the domain bounded by the curve.


If $f$ is in the closed span of $E_{\Lambda}$ in $L^{p}(I)$,

## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$
Characterize the closed span of the exponential system

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

in $L^{P}(I)$ spaces where $I$ is a simple closed rectifiable curve in $\mathbb{C}$, and $G_{l}$ is the domain bounded by the curve.


If $f$ is in the closed span of $E_{\Lambda}$ in $L^{p}(I)$, then $f$ is in the $L^{p}$ closure of polynomials,

## Second Goal

Given $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ in $U(d, 0)$
Characterize the closed span of the exponential system

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

in $L^{P}(I)$ spaces where $I$ is a simple closed rectifiable curve in $\mathbb{C}$, and $G_{l}$ is the domain bounded by the curve.


If $f$ is in the closed span of $E_{\Lambda}$ in $L^{p}(I)$, then $f$ is in the $L^{p}$ closure of polynomials, hence $f \in E^{P}\left(G_{l}\right)$.

## Curve / is surrounded by a rectangle whose height is less than $2 \pi d$

# Curve I is surrounded by a rectangle whose height is less than $2 \pi d$ 



Theorem B
Suppose the Domain Gl bounded by the curve I is a Smirnov domain.

## Curve I is surrounded by a rectangle whose height is less than $2 \pi d$



Height $<2 \pi d$

Theorem B
Suppose the Domain $G_{l}$ bounded by the curve I is a Smirnov domain. Suppose also that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$.

## Curve I is surrounded by a rectangle whose height is less than $2 \pi d$



Height $<2 \pi d$

## Theorem B

Suppose the Domain Gl bounded by the curve I is a Smirnov domain. Suppose also that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$

## Curve I is surrounded by a rectangle whose height is less than $2 \pi d$



Height $<2 \pi d$

## Theorem B

Suppose the Domain $G_{l}$ bounded by the curve I is a Smirnov domain. Suppose also that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ Coincides with the Smirnov space $E^{p}\left(G_{l}\right)$.

## Proof

It is enough to show that $E^{P}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.

## Proof

It is enough to show that $E^{P}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.

## Proof

It is enough to show that $E^{P}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{l}$ is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.

## Proof

It is enough to show that $E^{p}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.
( B. Ya. Levin , A. F. Leont'ev):

## Proof

It is enough to show that $E^{p}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.
( B. Ya. Levin, A. F. Leont'ev): Since the density of $\Lambda$ is $d$,

## Proof

It is enough to show that $E^{p}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.
( B. Ya. Levin, A. F. Leont'ev): Since the density of $\Lambda$ is $d$, AND the height of the rectangle is less than $2 \pi d$,

## Proof

It is enough to show that $E^{p}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.
( B. Ya. Levin, A. F. Leont'ev): Since the density of $\Lambda$ is $d$, AND the height of the rectangle is less than $2 \pi d$, then the system $E_{\Lambda}$ is Complete in $H(K)$.

## Proof

It is enough to show that $E^{p}\left(G_{l}\right)$ is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Since $G_{/}$is a Smirnov domain we have to show that the $L^{p}$ closure of polynomials is a subspace of the closed span of the exponential system $E_{\Lambda}$ in $L^{p}(I)$.
Let $H(K)$ be the space of functions analytic in the rectangle $K$ with the topology of uniform convergence on compact subsets.
( B. Ya. Levin, A. F. Leont'ev): Since the density of $\Lambda$ is $d$, AND the height of the rectangle is less than $2 \pi d$, then the system $E_{\Lambda}$ is Complete in $H(K)$.
Hence polynomials are approximated uniformly on the curve $/$ by exponential polynomials.

## The curve I is Surrounding a rectangle whose height is $2 \pi d$

## The curve I is Surrounding a rectangle whose height is $2 \pi d$



## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$



## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$

Theorem C


Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density d. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ is a Proper subspace of the Smirnov space $E^{p}\left(G_{l}\right)$.

## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$

Theorem C


Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ is a Proper subspace of the Smirnov space $E^{p}\left(G_{l}\right)$. For any $\lambda \notin\left\{\lambda_{n}\right\}$, the function $e^{\lambda z}$ does not belong to the closed span of the system.

## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$



Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ is a Proper subspace of the Smirnov space $E^{p}\left(G_{l}\right)$. For any $\lambda \notin\left\{\lambda_{n}\right\}$, the function $e^{\lambda z}$ does not belong to the closed span of the system.
Question:

## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$



Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ is a Proper subspace of the Smirnov space $E^{p}\left(G_{l}\right)$. For any $\lambda \notin\left\{\lambda_{n}\right\}$, the function $e^{\lambda z}$ does not belong to the closed span of the system.
Question: Can we characterize the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ ?

## The curve $/$ is Surrounding a rectangle whose height is $2 \pi d$



Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}$ has Density $d$. Then the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ is a Proper subspace of the Smirnov space $E^{p}\left(G_{l}\right)$. For any $\lambda \notin\left\{\lambda_{n}\right\}$, the function $e^{\lambda z}$ does not belong to the closed span of the system.
Question: Can we characterize the closed span of the exponential system $E_{\Lambda}$ in the space $L^{p}(I)$ for $p \geq 1$ ?
We give an answer when $\Lambda \in U(d, 0)$.

## Characterizing the closed span of $E_{\Lambda}$

## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}}$


## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}} \quad S_{l_{d}}$ the set of all such line segments


## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}} \quad S_{l_{d}}$ the set of all such line segments


## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}} \quad S_{l_{d}}$ the set of all such line segments


## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}} \quad S_{l_{d}}$ the set of all such line segments


## Characterizing the closed span of $E_{\Lambda}$

Let $\Lambda$ belong to the class $U(d, 0)$.
Let $E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$.

Curve $I_{d}$, Domain $G_{l_{d}} \quad S_{l_{d}}$ the set of all such line segments


## The closed span of $E_{\Lambda}$ in $L^{p}\left(I_{d}\right)$

## The closed span of $E_{\Lambda}$ in $L^{p}\left(I_{d}\right)$

## Theorem D

Let $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty} \in U(d, 0)$ and consider an $l_{d}$ curve and its $q_{l_{d}}$ constant.

- Then every function $f$ belonging to the closed span of $E_{\Lambda}$ in $L^{p}\left(I_{d}\right)$ for $p \geq 1$, not only extends analytically in the domain $G_{l_{d}}$ and belongs to the Smirnov space $E^{P}\left(G_{d}\right)$.
- But it is also extended analytically in the half-plane $H_{q_{d}}:=\left\{z: \Re z<q_{l_{d}}\right\}$, admitting a unique Taylor-Dirichlet series representation of the form

$$
g(z)=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} c_{n, k} z^{k}\right) e^{\lambda_{n} z}, \quad c_{n, k} \in \mathbb{C}, \quad \forall z \in H_{q_{l d}}
$$

with the series converging uniformly on compact subsets of $H_{q_{l d}}$.

## Crucial Tool: Distances in $L^{p}\left(I_{d}\right)$

## Crucial Tool: Distances in $L^{p}\left(I_{d}\right)$

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belongs to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Let

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\} .
$$

## Crucial Tool: Distances in $L^{p}\left(I_{d}\right)$

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belongs to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Let

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\} .
$$

Let $\quad p_{n, k}(z):=z^{k} e^{\lambda_{n} z} \quad$ And $\quad E_{\Lambda_{n, k}}:=E_{\Lambda} \backslash\left\{p_{n, k}\right\}$.

## Crucial Tool: Distances in $L^{p}\left(I_{d}\right)$

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belongs to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Let

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\} .
$$

Let $\quad p_{n, k}(z):=z^{k} e^{\lambda_{n} z} \quad$ And $\quad E_{\Lambda_{n, k}}:=E_{\Lambda} \backslash\left\{p_{n, k}\right\}$.

Define the Distance between $p_{n, k}$ and the closed span of $E_{\Lambda_{n, k}}$ in $L^{p}\left(I_{d}\right)$

$$
D_{p, n, k}:=\inf _{g \in \operatorname{span}\left(E_{\lambda_{n, k}}\right)}\left\|p_{n, k}-g\right\|_{L^{p}\left(l_{d}\right)}
$$

## Crucial Tool: Distances in $L^{p}\left(I_{d}\right)$

Suppose that $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belongs to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Let

$$
E_{\Lambda}=\left\{z^{k} e^{\lambda_{n} z}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

$$
\text { Let } \quad p_{n, k}(z):=z^{k} e^{\lambda_{n} z} \quad \text { And } \quad E_{\Lambda_{n, k}}:=E_{\Lambda} \backslash\left\{p_{n, k}\right\} .
$$

Define the Distance between $p_{n, k}$ and the closed span of $E_{\Lambda_{n, k}}$ in $L^{p}\left(I_{d}\right)$

$$
D_{p, n, k}:=\inf _{g \in \operatorname{span}\left(E_{\Lambda_{n, k}}\right)}\left\|p_{n, k}-g\right\|_{L^{p}\left(l_{d}\right)}
$$

## Theorem E

For every $\epsilon>0$ there is a constant $u_{\epsilon}>0$, independent of $p \geq 1, n \in \mathbb{N}$ and $k=0,1, \ldots, \mu_{n}-1$, but depending on $\Lambda$ the curve $I_{d}$, so that

$$
D_{p, n, k} \geq u_{\epsilon} e^{\left(q_{l d}-\epsilon\right) \lambda_{n}}
$$

# A Biorthogonal sequence to $E_{\Lambda}$ in $E^{2}\left(G_{l_{d}}\right)$ and a solution to a Moment Problem 

Theorem F

- Let $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belong to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant.


## A Biorthogonal sequence to $E_{\Lambda}$ in $E^{2}\left(G_{l_{d}}\right)$ and a solution to a Moment Problem

## Theorem F

- Let $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belong to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Then there exists a family of functions

$$
\left\{r_{n, k} \in E^{2}\left(G_{l_{d}}\right): n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

such that this family is the Unique Biorthogonal sequence to the system $E_{\Lambda}$ in $E^{2}\left(G_{l_{d}}\right)$, belonging to $\overline{\operatorname{span}}\left(E_{\Lambda}\right)$ in $E^{2}\left(G_{l_{d}}\right)$.

## A Biorthogonal sequence to $E_{\Lambda}$ in $E^{2}\left(G_{l_{d}}\right)$ and a solution to a Moment Problem

## Theorem F

- Let $\Lambda=\left\{\lambda_{n}, \mu_{n}\right\}_{n=1}^{\infty}$ belong to the class $U(d, 0)$ and consider an $I_{d}$ curve and its $q_{l_{d}}$ constant. Then there exists a family of functions

$$
\left\{r_{n, k} \in E^{2}\left(G_{l_{d}}\right): n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}
$$

such that this family is the Unique Biorthogonal sequence to the system $E_{\Lambda}$ in $E^{2}\left(G_{l_{d}}\right)$, belonging to $\overline{\operatorname{span}}\left(E_{\Lambda}\right)$ in $E^{2}\left(G_{l_{d}}\right)$.

- Moreover, for every $\epsilon>0$ there is a constant $m_{\epsilon}>0$, independent of $n$ and $k$, but depending on $\wedge$ and the curve $I_{d}$, so that

$$
\left\|r_{n, k}\right\|_{E^{2}\left(G_{l d}\right)} \leq m_{\epsilon} e^{\left(-q_{l d}+\epsilon\right) \lambda_{n}}, \quad \forall n \in \mathbb{N}, \quad k=0,1, \ldots, \mu_{n}-1
$$

- Let $\left\{d_{n, k}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$ be a doubly-indexed sequence of complex numbers such that $\limsup _{n \rightarrow \infty} \frac{\log A_{n}}{\lambda_{n}}<q_{l_{d}} \quad$ where $\quad A_{n}=\max \left\{\left|d_{n, k}\right|: k=0,1, \ldots, \mu_{n}-1\right\}$.
- Let $\left\{d_{n, k}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$ be a doubly-indexed sequence of complex numbers such that
$\limsup _{n \rightarrow \infty} \frac{\log A_{n}}{\lambda_{n}}<q_{I_{d}} \quad$ where $\quad A_{n}=\max \left\{\left|d_{n, k}\right|: k=0,1, \ldots, \mu_{n}-1\right\}$.
Then the function

$$
f(z):=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} d_{n, k} r_{n, k}(z)\right)
$$

- Let $\left\{d_{n, k}: n \in \mathbb{N}, k=0,1, \ldots, \mu_{n}-1\right\}$ be a doubly-indexed sequence of complex numbers such that
$\limsup _{n \rightarrow \infty} \frac{\log A_{n}}{\lambda_{n}}<q_{l_{d}} \quad$ where $\quad A_{n}=\max \left\{\left|d_{n, k}\right|: k=0,1, \ldots, \mu_{n}-1\right\}$.
Then the function

$$
f(z):=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{\mu_{n}-1} d_{n, k} r_{n, k}(z)\right)
$$

belongs to $E^{2}\left(G_{l_{d}}\right)$ and it is a solution to the moment problem

$$
\int_{I_{d}} \overline{z^{k} e^{\lambda_{n} z}} f(z)|d z|=d_{n, k} \quad \forall n \in \mathbb{N} \quad \text { and } \quad k=0,1,2, \ldots \mu_{n}-1 .
$$

A. S. Krivosheev, A fundamental principle for invariant subspaces in convex domains, Izv. Ross. Acad. Nauk Ser. Mat. 68 no. 2 (2004), 71-136, English transl., Izv. Math. 68 no. 2 (2004), 291-353.
( O. A. Krivosheeva, Singular points of the sum of a series of exponential monomials on the boundary of the convergence domain, Algebra i Analiz 23 no. 2 (2011), 162-205; English transl., St. Petersburg Math. J. 23 no. 2 (2012), 321-350.

围 O. A. Krivosheeva, A. S. Krivosheev, Singular Points of the Sum of a Dirichlet Series on the Convergence Line, Funktsional. Anal. i Prilozhen. 49, no. 2 (2015), 54-69; English transl., Funct. Anal. Appl. 49 no. 2 (2015), 122-134.
(R. G, Polya, On converse gap theorems. Trans. Amer. Math. Soc. 52, (1942). 65-71.
(1. M. G. Valiron, Sur les solutions des équations différentielles linéaires d'ordre infini et a coefficients constants, Ann. Ecole Norm. (3) 46 (1929), 25-53.
E. Zikkos, On a theorem of Norman Levinson and a variation of the Fabry Gap theorem, Complex Var. and Ell. Eqns. 50 no. 4 (2005), 229-255.
E. Zikkos, Analytic continuation of Taylor-Dirichlet series and non-vanishing solutions of a differential equation of infinite order, CMFT 10 no. 1 (2010), 367-398.
E. Zikkos, A Taylor-Dirichlet series with no singularities on its abscissa of convergence.

# THANK YOU VERY MUCH!!! 

## ェA乏 EYXAPIऽT $\Omega$ ПАРА ПО^Y !!!

