Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings

Jian-Feng Zhu (朱 剑峰)

Huaqiao University, Xiamen, China flandy@hqu.edu.cn

Report in the conference CAFT2018, University of Crete

July 2, 2018

Jian-Feng Zhu (CAFT2018)

Boundary Schwarz lemma

2 Boundary Schwarz lemma for harmonic mappings

Boundary Schwarz lemma for harmonic K-q.c.

Boundary Schwarz lemma for pluriharmonic mappings

The classical boundary Schwarz lemma

Theorem A. Suppose $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic self-mapping of the unit disk \mathbb{D} satisfying f(0) = 0, and further, f is analytic at z = 1 with f(1) = 1. Then, the following two conclusions hold:

- *f*′(1) ≥ 1.
- f'(1) = 1 if and only if $f(z) \equiv z$.

Theorem A has the following generalization.

Theorem B. Suppose $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic mapping with f(0) = 0, and, further, f is analytic at $z = \alpha \in \mathbb{T}$ with $f(\alpha) = \beta \in \mathbb{T}$. Then, the following two conclusions hold:

•
$$\overline{eta} f'(lpha) lpha \geq 1$$
 .

• $\overline{\beta}f'(\alpha)\alpha = 1$ if and only if $f(z) \equiv e^{i\theta}z$, where $e^{i\theta} = \beta \alpha^{-1}$ and $\theta \in \mathbb{R}$.

Remark that, when $\alpha = \beta = 1$, Theorem B coincides with Theorem A.

Generalizations of boundary Schwarz lemma

Theorem C. (Carathéodory-Cartan-Kaup-Wu Theorem) Let Ω be a bounded domain in \mathbb{C}^n , and let *f* be a holomorphic self-mapping of Ω which fixes a point $p \in \Omega$. Then

- The eigenvalues of $J_f(p)$ all have modulus not exceeding 1;
- $|\det J_f(p)| \leq 1;$
- if $|\det J_f(p)| = 1$, then *f* is a biholomorphism of Ω .

H. Wu, *Normal families of holomorphic mappings*, Acta. Math. **119**, 1967, 193-233.

Recently, Liu et al. established a new type of boundary Schwarz lemma for holomorphic self-mappings of strongly pseudoconvex domain in \mathbb{C}^n .

T. Liu and X. Tang, Schwarz lemma at the boundary of strongly pseudoconvex domain in \mathbb{C}^n , Math. Ann. **366**, 2016, 655-666.

Jian-Feng Zhu (CAFT2018)

Boundary Schwarz lemma

Theorem 1. Suppose that *w* is a harmonic self-mapping of \mathbb{D} satisfying w(0) = 0. Then we have the following inequality holds.

$$|w(z)| \leq rac{4}{\pi} \arctan\left(|z| rac{|z| + rac{\pi}{4} \Lambda_w(0)}{1 + rac{\pi}{4} \Lambda_w(0)|z|}
ight) := M(z) \quad ext{for} \quad z \in \mathbb{D}.$$
 (1)

We remark here that

$$\frac{4}{\pi}\arctan\left(|z|\frac{|z|+\frac{\pi}{4}\Lambda_w(0)}{1+\frac{\pi}{4}\Lambda_w(0)|z|}\right) \leq \frac{4}{\pi}\arctan|z|,$$

holds for all $z \in \mathbb{D}$, since $\Lambda_w(0) \leq \frac{4}{\pi}$. Furthermore, the equality holds if |z| = 1.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

By using Theorem 1, we establish the following new-type of boundary Schwarz lemma for harmonic mappings.

Theorem 2. Suppose that *w* is a harmonic self-mapping of \mathbb{D} satisfying w(0) = 0. If *w* is differentiable at z = 1 with w(1) = 1, then we have the following inequality holds.

$$\mathsf{Re}[w_{z}(1)] = \mathsf{Re}[w_{z}(1) + w_{\overline{z}}(1)] \ge \frac{4}{\pi} \frac{1}{1 + \frac{\pi}{4}\Lambda_{w}(0)}.$$
 (2)

The above inequality is sharp.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of Theorem 2.

Since *w* is differentiable at z = 1, we know that

$$w(z) = 1 + w_z(1)(z-1) + w_{\overline{z}}(1)(\overline{z}-1) + o(|z-1|).$$

By using Theorem 1, we have

$$2\mathsf{Re}\left[w_{z}(1)(1-z)+w_{\overline{z}}(1)(1-\overline{z})\right] \geq 1-(M(z))^{2}+\circ(|z-1|). \quad (3)$$

Take $z = r \in (0, 1)$ and letting $r \to 1^-$, it follows from M(1) = 1 that

$$2\operatorname{Re}[w_{Z}(1) + w_{\overline{Z}}(1)] \geq \lim_{r \to 1^{-}} \frac{1 - M(r)^{2}}{1 - r}$$
(4)
$$= \frac{4}{\pi} \frac{2}{1 + \frac{\pi}{4} \Lambda_{W}(0)}.$$

Therefore we have

$$\mathsf{Re}[w_z(1) + w_{\overline{z}}(1)] \geq rac{4}{\pi} rac{1}{1 + rac{\pi}{4} \Lambda_w(0)}$$

as required.

Jian-Feng Zhu (CAFT2018)

Remarks

It is known that a harmonic mapping w of \mathbb{D} has the representation $w = h + \bar{g}$, where h and g are holomorphic in \mathbb{D} . We add the symbol "Re" in Theorem 2 because $w_x(1)$ may not be real. However, if in additional assuming $\varphi = h - g$ is holomorphic at z = 1, then

$$Im[w_z(1)] = 0 = Im[w_{\bar{z}}(1)],$$

and the symbol "Re" in (2) can be removed.

To check the sharpness of (2), consider the real harmonic mapping

$$w(z) = rac{2}{\pi} \arctan rac{2x}{1-x^2-y^2} : \mathbb{D}
ightarrow (-1,1),$$

where $z = x + iy \in \mathbb{D}$. It is not difficult to check that *w* satisfies all the assumptions of Theorem 2. Moreover, elementary calculations show that $\Lambda_w(0) = \frac{4}{\pi}$ and $w_x(1) = \frac{2}{\pi}$.

We say that a function $f : D \to \mathbb{C}$ is absolutely continuous on lines, abbreviated as ACL, in a domain D if for every closed rectangle $\Gamma \subseteq D$ with sides parallel to x and y axes, respectively, f is absolutely continuous on a.e. horizontal line and a.e. vertical line in Γ . It is known that the partial derivatives of such functions always exist a.e. in D.

Definition. Let $K \ge 1$ be a constant. A homeomorphism $f : D \to \Omega$ between domains D and Ω in \mathbb{C} is *K*-quasiconformal, briefly *K*-q.c. in the following, if

- f is ACL in D, and
- $|f_{\overline{z}}(z)| \le k |f_z(z)|$ a.e. in *D*, where $k = \frac{K-1}{K+1}$.

Harmonic quasiconformal mappings are natural the generalization of conformal mappings. Recently many researchers have studied this active topic and obtained many interesting results.

Jian-Feng Zhu (CAFT2018)

Boundary Schwarz lemma

Boundary Schwarz lemma for harmonic *K*-q.c.

For L > 0, $\Phi_L(s)$ is the Hersch-Pfluger distortion function defined by the equalities

$$\Phi_L(s) := \mu^{-1}(\mu(s)/L) , \ 0 < s < 1; \ \Phi_L(0) := 0 , \ \Phi_L(1) := 1,$$

where $\mu(s)$ stands for the module of Grötzsch's extremal domain $\mathbb{D}\backslash [0,s].$ Let

$$L_{\mathcal{K}} := \frac{2}{\pi} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{d\left(\Phi_{1/\mathcal{K}}(s)^{2}\right)}{s\sqrt{1-s^{2}}}.$$
(5)

Then L_K is a strictly decreasing function of K such that

$$\lim_{K \to 1} L_K = L_1 = 1 \quad \text{and} \quad \lim_{K \to \infty} L_K = 0.$$
 (6)

イロト イポト イヨト イヨト

Theorem 3. Let *w* be a harmonic *K*-quasiconformal self-mapping of \mathbb{D} . If *w* is differential at 1 with w(0) = 0 and w(1) = 1, then

$$\operatorname{\mathsf{Re}}[w_{\mathsf{x}}(1)] \ge M(\mathsf{K}) := \max\left\{\frac{2}{\pi}, \ L_{\mathsf{K}}\right\},\tag{7}$$

where L_{K} is given by (5). Furthermore, if K = 1, then (7) can be rewritten as follows

$$w_z(1) \ge 1 \tag{8}$$

which coincides with Theorem A.

Theorem 4. Suppose that *w* is a harmonic self-mapping of \mathbb{D} satisfying w(a) = 0. If *w* is differentiable at $z = \alpha$ with $w(\alpha) = \beta$, where $\alpha, \beta \in \mathbb{T}$, then we have the following inequality holds.

$$\operatorname{Re}\left\{\overline{\beta}\left[w_{x}(\alpha)\right]\right\} \geq \frac{4}{\pi} \frac{1}{1 + \frac{\pi}{4}\Lambda_{w}(a)(1 - |a|^{2})} \frac{1 - |a|^{2}}{|1 - \bar{a}\alpha|^{2}}.$$
 (9)

When $\alpha = \beta = 1$ and a = 0, then Theorem 4 coincides with Theorem 2.

Boundary Schwarz lemma for pluriharmonic mappings

For an $n \times n$ complex matrix A, we introduce the operator norm

$$\|A\| = \sup_{z \neq 0} \frac{\|Az\|}{\|z\|} = \max\{\|A\theta\| : \theta \in \partial \mathbb{B}^n\}.$$
 (10)

Theorem 5. Let *w* be a pluriharmonic self-mapping of the unit ball $\mathbb{B}^n \subseteq \mathbb{C}^n$ satisfying w(a) = 0, where $a \in \mathbb{B}^n$. If w(z) is differentiable at $z = \alpha \in \partial \mathbb{B}^n$ with $w(\alpha) = \beta \in \partial \mathbb{B}^n$, then we have the following inequality holds.

$$\operatorname{\mathsf{Re}}\left\{ \overline{\beta}^{T} \left[w_{z}(\alpha) \frac{1 - \overline{a}^{T} \alpha}{1 - |a|^{2}} (\alpha - a) + w_{\overline{z}}(\alpha) \frac{1 - a^{T} \overline{\alpha}}{1 - |a|^{2}} (\overline{\alpha} - \overline{a}) \right] \right\}$$
(11)
$$\geq \frac{4}{\pi} \frac{1}{1 + \frac{\pi}{4} \Lambda_{w}(a) \left| \frac{\alpha - a}{1 - \overline{a}^{T} \alpha} \right| (1 - |a|^{2})},$$

where $\Lambda_w(a) = ||w_z(a)|| + ||w_{\overline{z}}(a)||$. If a = 0, then we have

$$\mathsf{Re}\left\{\overline{\beta}^{T}[w_{\mathbf{x}}(\alpha)]\right\} \geq \frac{4}{\pi} \frac{1}{1 + \frac{\pi}{4}\Lambda_{w}(0)}.$$
(12)

Thank you for your attentions!

Jian-Feng Zhu (CAFT2018)

Boundary Schwarz lemma

July 2, 2018 15 / 15

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A