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Weak Tangent: Definition

Let (X , d) be a metric space. What is a weak tangent of (X , d)?

Gist: xn ∈ X , λn → +∞,

(X , xn, λnd)→ (T , x , dT )

More precisely: ∀R > 0,

B(X ,λnd)(xn,R)→ B(T ,dT )(x ,R).

Absolute rigor: ∀R > 0, ∀ε > 0, ∃N ∈ N, ∀n ≥ N,

dGH(B(X ,λnd)(xn,R + ε),B(T ,dT )(x ,R)) < ε.
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Weak Tangent: Definition

Example

If (X , d) is a compact Riemannian n-manifold, then every weak
tangent of (X , d) is (Rn, 0).

Example

The standard 1/3-Cantor set has uncountably many weak tangents.
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Quasisymmetry

Definition

A quasisymmetry ϕ : X → Y between two metric spaces (X , dX )
and (Y , dY ) is a homeomorphism such that for all x , y , z ∈ X with
x 6= z ,

dY (ϕ(x), ϕ(y))

dY (ϕ(x), ϕ(z))
≤ η

(
dX (x , y)

dX (x , z)

)
.

where η : [0,∞)→ [0,∞) is a homeomorphism.

Intuition: there exists C > 1 such that for
every ball B ⊂ X , there exists another ball
B ′ ⊂ Y such that

B ′ ⊂ ϕ(B) ⊂ CB ′.

f (B)
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≤ η
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dX (x , y)
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where η : [0,∞)→ [0,∞) is a homeomorphism.

Remark: If ϕ : X → Y is a quasisymmetry, then ϕ−1 : Y → X is
a quasisymmetry.

4 / 11



Weak Tangents and Quasisymmetries

Lemma

If ϕ : X → Y is a quasisymmetry, and if (X , xn, λndX )→ T , then
for some µn, (Y , ϕ(xn), µndY ) has a converging subsequence
whose limit T ′ is quasisymmetric to T .

Theorem (Kinneberg [3])

A doubling metric circle C is a quasicircle if and only if every weak
tangent of C is quasisymmetric to (R, 0).

Theorem (W. [4])

For all n ≥ 2, there exists a doubling, LLC metric space X
homeomorphic to Sn such that every weak tangent of X is
isometric to (Rn, 0) but X is not quasisymmetric to Sn.
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Weak Tangents and Quasisymmetries

Theorem (Bonk, Kleiner [1])

Suppose Z is a uniformly perfect, doubling compact metric space,
and G y Z is a uniformly quasi-Möbius action for which the
induced action G y Tri(Z ) is cocompact. If (T , p) is a weak
tangent of Z , then there exists a quasi-Möbius homeomorphism
h : (Ŝ , d̂p)→ Z .

Taking G = finitely generated infinite hyperbolic group, Z = ∂∞G :

Corollary

Suppose ∂∞G is homeomorphic to Sn. If any weak tangent of ∂∞G
is quasisymmetric to (Rn, 0), then ∂∞G is quasisymmetric to Sn.

Conjecture (Cannon’s conjecture)

If ∂∞G is homeomorphic to S2, then ∂∞G is quasisymmetric to S2.
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h : (Ŝ , d̂p)→ Z .

Taking G = finitely generated infinite hyperbolic group, Z = ∂∞G :

Corollary

Suppose ∂∞G is homeomorphic to Sn. If any weak tangent of ∂∞G
is quasisymmetric to (Rn, 0), then ∂∞G is quasisymmetric to Sn.

Conjecture (Cannon’s conjecture)

If ∂∞G is homeomorphic to S2, then ∂∞G is quasisymmetric to S2.

6 / 11



Weak Tangents and Quasisymmetries

Theorem (Bonk, Kleiner [1])

Suppose Z is a uniformly perfect, doubling compact metric space,
and G y Z is a uniformly quasi-Möbius action for which the
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Weak Tangents and Expanding Thurston Maps

f : S2 → S2 is an expanding Thurston map i.e

1 branched covering

2 postcritically finite: |{f n(c) : n ∈ N, c critical point}| <∞
3 for every x ∈ S2 there exists open x ∈ U ⊂ S2,

lim
n→∞

sup{diamV : V connected component of f −n(U)} = 0.

Example (The 2× 2-subdivision map)
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Visual Spheres of Expanding Thurston Maps

2-tiles

f f

1-tiles 0-tiles

For general expanding Thurston maps:

1 There exists N ∈ N and f N -invariant Jordan curve C
containing all postcritical points [2]. WLOG N = 1.

2 C gives us 2 0-tiles.

3 f −1(C) divides 0-tiles into 1-tiles.

4 f −n(C) gives us n-tiles.
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Visual Spheres of Expanding Thurston Maps

Proposition (Bonk and Meyer [2])

There exists Λ > 1 and a metric ρ on S2 that generates the
topology of S2 and such that

diamρ(n-tile) ≈ Λ−n.

ρ is a visual metric with respect to f

Λ is the expansion factor of ρ.

(S2, ρ) is a visual sphere.

visual metric always exists for f but not unique.

two visual spheres for f are snowflake equivalent, therefore
quasisymmetric.
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Visual Spheres of Expanding Thurston Maps

Theorem

Let f be an expanding Thurston map with no periodic critical
point and ρ be a visual metric with respect to f . TFAE:

(i) f is Thurston equivalent to a rational map.

(ii) (S2, ρ) is a quasisphere.

(iii) Every weak tangent of (S2, ρ) is quasisymmetric to (R2, 0).

(iv) Some weak tangent of (S2, ρ) is quasisymmetric to (R2, 0).

(i) ⇐⇒ (ii) Bonk and Meyer [2].
(ii) =⇒ (iii) Lemma.
(iii) =⇒ (iv) Clear since (S2, ρ) has a weak tangent.
(iv) =⇒ (ii) W.
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