Weak Tangents of Metric Spheres

Angela Wu

University of California, Los Angeles

New Developments in Complex Analysis and Function Theory, 2nd July, 2018

 Ω

Let (X, d) be a metric space. What is a weak tangent of (X, d) ?

Let (X, d) be a metric space. What is a weak tangent of (X, d) ? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

 $(X, x_n, \lambda_n d) \rightarrow (T, x, d_T)$

Let (X, d) be a metric space. What is a weak tangent of (X, d) ? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

$$
(X, x_n, \lambda_n d) \to (T, x, d_T)
$$

More precisely: $\forall R > 0$.

$$
B_{(X,\lambda_n d)}(x_n,R)\to B_{(T,d_T)}(x,R).
$$

Let (X, d) be a metric space. What is a weak tangent of (X, d) ? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

$$
(X, x_n, \lambda_n d) \to (T, x, d_T)
$$

More precisely: $\forall R > 0$.

$$
B_{(X,\lambda_n d)}(x_n,R)\to B_{(T,d_T)}(x,R).
$$

Absolute rigor: $\forall R > 0$, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n > N$,

$$
d_{GH}(\overline{B}_{(X,\lambda_n d)}(x_n,R+\varepsilon),\overline{B}_{(T,d_T)}(x,R)) < \varepsilon.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 (^

Example

If (X, d) is a compact Riemannian *n*-manifold, then every weak tangent of (X, d) is $(\mathbb{R}^n, 0)$.

Example

The standard $1/3$ -Cantor set has uncountably many weak tangents.

3 / 11

イロメ 不優 メイ君メ イ君メー 君

Quasisymmetry

Definition

A quasisymmetry $\varphi: X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is a homeomorphism such that for all $x, y, z \in X$ with $x \neq z$,

$$
\frac{d_Y(\varphi(x),\varphi(y))}{d_Y(\varphi(x),\varphi(z))} \leq \eta\left(\frac{d_X(x,y)}{d_X(x,z)}\right).
$$

where $\eta : [0, \infty) \to [0, \infty)$ is a homeomorphism.

Intuition: there exists $C > 1$ such that for every ball $B \subset X$, there exists another ball $B' \subset Y$ such that

 $B' \subset \varphi(B) \subset CB'.$

Definition

A quasisymmetry $\varphi: X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is a homeomorphism such that for all $x, y, z \in X$ with $x \neq z$,

$$
\frac{d_Y(\varphi(x),\varphi(y))}{d_Y(\varphi(x),\varphi(z))} \leq \eta\left(\frac{d_X(x,y)}{d_X(x,z)}\right).
$$

where $\eta : [0, \infty) \to [0, \infty)$ is a homeomorphism.

Remark: If $\varphi:X\to Y$ is a quasisymmetry, then $\varphi^{-1}:Y\to X$ is a quasisymmetry.

4 / 11

 $\mathbf{C} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

Lemma

If $\varphi: X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T .

5 / 11

イロト イ部 トメ きょ メ きょう き

Lemma

If $\varphi: X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T .

Theorem (Kinneberg [\[3\]](#page-27-1))

A doubling metric circle C is a quasicircle if and only if every weak tangent of C is quasisymmetric to $(\mathbb{R}, 0)$.

Lemma

If $\varphi: X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T .

Theorem (Kinneberg [\[3\]](#page-27-1))

A doubling metric circle C is a quasicircle if and only if every weak tangent of C is quasisymmetric to $(\mathbb{R}, 0)$.

Theorem (W. [\[4\]](#page-27-2))

For all $n \geq 2$, there exists a doubling, LLC metric space X homeomorphic to \mathbb{S}^n such that every weak tangent of X is isometric to $(\mathbb{R}^n, 0)$ but X is not quasisymmetric to \mathbb{S}^n .

Theorem (Bonk, Kleiner [\[1\]](#page-27-3))

Suppose Z is a uniformly perfect, doubling compact metric space, and G \sim Z is a uniformly quasi-Möbius action for which the induced action $G \cap Tr(Z)$ is cocompact. If (T, p) is a weak tangent of Z , then there exists a quasi-Möbius homeomorphism $h : (\widehat{S}, \widehat{d}_p) \to Z$.

Theorem (Bonk, Kleiner [\[1\]](#page-27-3))

Suppose Z is a uniformly perfect, doubling compact metric space, and G \sim Z is a uniformly quasi-Möbius action for which the induced action $G \cap Tri(Z)$ is cocompact. If (T, p) is a weak $tangent$ of Z , then there exists a quasi-Möbius homeomorphism $h : (\widehat{S}, \widehat{d}_p) \to Z$.

Taking G = finitely generated infinite hyperbolic group, $Z = \partial_{\infty} G$:

Corollary

Suppose $\partial_\infty {\sf G}$ is homeomorphic to ${\mathbb S}^n$. If any weak tangent of $\partial_\infty {\sf G}$ is quasisymmetric to $(\mathbb{R}^n, 0)$, then $\partial_{\infty}G$ is quasisymmetric to \mathbb{S}^n .

Theorem (Bonk, Kleiner [\[1\]](#page-27-3))

Suppose Z is a uniformly perfect, doubling compact metric space, and G \sim Z is a uniformly quasi-Möbius action for which the induced action $G \cap Tri(Z)$ is cocompact. If (T, p) is a weak tangent of Z , then there exists a quasi-Möbius homeomorphism $h : (\widehat{S}, \widehat{d}_p) \to Z$.

Taking G = finitely generated infinite hyperbolic group, $Z = \partial_{\infty} G$:

Corollary

Suppose $\partial_\infty {\sf G}$ is homeomorphic to ${\mathbb S}^n$. If any weak tangent of $\partial_\infty {\sf G}$ is quasisymmetric to $(\mathbb{R}^n, 0)$, then $\partial_{\infty}G$ is quasisymmetric to \mathbb{S}^n .

Conjecture (Cannon's conjecture)

If $\partial_\infty G$ is homeomorphic to \mathbb{S}^2 , then $\partial_\infty G$ is quasisymmetric to \mathbb{S}^2 .

◆ ロメ ◆ 御メ ◆ 君メ ◆ 君メ │ 君

 $f:\mathbb{S}^2\to\mathbb{S}^2$ is an *expanding Thurston map* i.e

- $f:\mathbb{S}^2\to\mathbb{S}^2$ is an *expanding Thurston map* i.e
	- $\textbf{1}$ branched covering : $\forall x\in\mathbb{S}^2,\exists$ open $U\ni x$, \exists homeo $\varphi,\psi,$

$$
(U,x) \stackrel{f}{\rightarrow} (f(U), f(x))
$$

$$
\downarrow \varphi \qquad \qquad \downarrow \psi
$$

$$
(\mathbb{D},0) \stackrel{z \mapsto z^d}{\longrightarrow} (\mathbb{D},0).
$$

7 / 11

イロメ イ団メ イモメ イモメー 毛

- $f:\mathbb{S}^2\to\mathbb{S}^2$ is an *expanding Thurston map* i.e
	- **1** branched covering
	- 2) postcritically finite: $|\{f^n(c):n\in\mathbb{N},c\text{ critical point}\}|<\infty$

 $f:\mathbb{S}^2\to\mathbb{S}^2$ is an *expanding Thurston map* i.e

- **1** branched covering
- 2) postcritically finite: $|\{f^n(c):n\in\mathbb{N},c\text{ critical point}\}|<\infty$
- \bullet for every $x\in \mathbb{S}^2$ there exists open $x\in U\subset \mathbb{S}^2,$

 $\lim_{n\to\infty} \sup\{\text{diam }V: V \text{ connected component of } f^{-n}(U)\}=0.$

 $f:\mathbb{S}^2\to\mathbb{S}^2$ is an *expanding Thurston map* i.e

- **1** branched covering
- 2) postcritically finite: $|\{f^n(c):n\in\mathbb{N},c\text{ critical point}\}|<\infty$
- \bullet for every $x\in \mathbb{S}^2$ there exists open $x\in U\subset \mathbb{S}^2,$

 $\lim_{n\to\infty} \sup\{\text{diam }V: V \text{ connected component of } f^{-n}(U)\}=0.$

メロメ メ御 メメ きょくきょう 目 290

For general expanding Thurston maps:

8 / 11

イロン イ何ン イヨン イヨン

For general expanding Thurston maps:

 $\textcolor{red}{\bullet}$ There exists $N\in\mathbb{N}$ and f^N -invariant Jordan curve $\mathcal C$ containing all postcritical points [\[2\]](#page-27-4). WLOG $N = 1$.

For general expanding Thurston maps:

- $\textcolor{red}{\bullet}$ There exists $N\in\mathbb{N}$ and f^N -invariant Jordan curve $\mathcal C$ containing all postcritical points [\[2\]](#page-27-4). WLOG $N = 1$.
- \bullet C gives us 2 0-tiles.

イロン イ何ン イヨン イヨン

For general expanding Thurston maps:

- $\textcolor{red}{\bullet}$ There exists $N\in\mathbb{N}$ and f^N -invariant Jordan curve $\mathcal C$ containing all postcritical points [\[2\]](#page-27-4). WLOG $N = 1$.
- 2 C gives us 2 0-tiles.
- $\mathbf{3}$ $f^{-1}(\mathcal{C})$ divides 0-tiles into 1-tiles.

イロメ イ押メ イヨメ イヨメー

For general expanding Thurston maps:

- $\textcolor{red}{\bullet}$ There exists $N\in\mathbb{N}$ and f^N -invariant Jordan curve $\mathcal C$ containing all postcritical points [\[2\]](#page-27-4). WLOG $N = 1$.
- 2 C gives us 2 0-tiles.
- $\mathbf{3}$ $f^{-1}(\mathcal{C})$ divides 0-tiles into 1-tiles.
- $f^{-n}(\mathcal{C})$ gives us *n*-tiles.

イロメ イ母メ イヨメ イヨメー

Proposition (Bonk and Meyer [\[2\]](#page-27-4))

There exists $\Lambda > 1$ and a metric ρ on \mathbb{S}^2 that generates the topology of \mathbb{S}^2 and such that

diam $_{\rho}(n$ -tile) $\approx \Lambda^{-n}$.

- \bullet ρ is a visual metric with respect to f
- Λ is the expansion factor of ρ .
- (\mathbb{S}^2, ρ) is a visual sphere.
- \bullet visual metric always exists for f but not unique.
- \bullet two visual spheres for f are snowflake equivalent, therefore quasisymmetric.

K ロ メ イ 団 メ ス ヨ メ ス ヨ メ ニ ヨ

Theorem

Let f be an expanding Thurston map with no periodic critical point and ρ be a visual metric with respect to f. TFAE:

- (i) f is Thurston equivalent to a rational map.
- (ii) (\mathbb{S}^2, ρ) is a quasisphere.

(iii) Every weak tangent of (\mathbb{S}^2, ρ) is quasisymmetric to $(\mathbb{R}^2, 0)$.

(iv) Some weak tangent of (\mathbb{S}^2, ρ) is quasisymmetric to $(\mathbb{R}^2, 0)$.

\n- (i)
$$
\iff
$$
 (ii) Bonk and Meyer [2].
\n- (ii) \implies (iii) Lemma.
\n- (iii) \implies (iv) Clear since (\mathbb{S}^2, ρ) has a weak tangent.
\n- (iv) \implies (ii) W.
\n

- 晶 M. Bonk and B. Kleiner Rigidity for quasi-Möbius group actions, J. Differential Geom., $61(1):81-106$, 2002.
- **M. Bonk and D. Meyer Expanding Thurston maps, American** Mathematical Soc., 2017.
- F. K. Kinneberg, Conformal dimension and boundaries of planar domains, Trans. Amer. Math. Soc. 369(9) 6511–6536, 2017.
- 暈 A. Wu, A metric sphere not a quasisphere but for which every weak tangent is Euclidean, arXiv:1806.02917, 2018.