Weak Tangents of Metric Spheres

Angela Wu

University of California, Los Angeles

New Developments in Complex Analysis and Function Theory, 2nd July, 2018

Let (X, d) be a metric space. What is a weak tangent of (X, d)?

Let (X, d) be a metric space. What is a weak tangent of (X, d)? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

$$(X, x_n, \lambda_n d) \rightarrow (T, x, d_T)$$

Let (X, d) be a metric space. What is a weak tangent of (X, d)? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

$$(X, x_n, \lambda_n d) \rightarrow (T, x, d_T)$$

More precisely: $\forall R > 0$,

$$B_{(X,\lambda_n d)}(x_n, R) \rightarrow B_{(T,d_T)}(x, R).$$

Let (X, d) be a metric space. What is a weak tangent of (X, d)? Gist: $x_n \in X$, $\lambda_n \to +\infty$,

$$(X, x_n, \lambda_n d) \rightarrow (T, x, d_T)$$

More precisely: $\forall R > 0$,

$$B_{(X,\lambda_n d)}(x_n, R) \rightarrow B_{(T,d_T)}(x, R).$$

Absolute rigor: $\forall R > 0$, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \ge N$,

$$d_{GH}(\overline{B}_{(X,\lambda_n d)}(x_n, R+\varepsilon), \overline{B}_{(T,d_T)}(x, R)) < \varepsilon.$$

Example

If (X, d) is a compact Riemannian *n*-manifold, then every weak tangent of (X, d) is $(\mathbb{R}^n, 0)$.

Example

The standard 1/3-Cantor set has uncountably many weak tangents.

Quasisymmetry

Definition

A quasisymmetry $\varphi : X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is a homeomorphism such that for all $x, y, z \in X$ with $x \neq z$,

$$rac{d_Y(arphi(x),arphi(y))}{d_Y(arphi(x),arphi(z))} \leq \eta\left(rac{d_X(x,y)}{d_X(x,z)}
ight)\,.$$

where $\eta : [0,\infty) \to [0,\infty)$ is a homeomorphism.

Intuition: there exists C > 1 such that for every ball $B \subset X$, there exists another ball $B' \subset Y$ such that

$$B' \subset \varphi(B) \subset CB'.$$

Definition

A quasisymmetry $\varphi : X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is a homeomorphism such that for all $x, y, z \in X$ with $x \neq z$,

$$\frac{d_{Y}(\varphi(x),\varphi(y))}{d_{Y}(\varphi(x),\varphi(z))} \leq \eta\left(\frac{d_{X}(x,y)}{d_{X}(x,z)}\right).$$

where $\eta: [0,\infty) \to [0,\infty)$ is a homeomorphism.

Remark: If $\varphi : X \to Y$ is a quasisymmetry, then $\varphi^{-1} : Y \to X$ is a quasisymmetry.

Lemma

If $\varphi : X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T.

Lemma

If $\varphi : X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T.

Theorem (Kinneberg [3])

A doubling metric circle C is a quasicircle if and only if every weak tangent of C is quasisymmetric to $(\mathbb{R}, 0)$.

Lemma

If $\varphi : X \to Y$ is a quasisymmetry, and if $(X, x_n, \lambda_n d_X) \to T$, then for some μ_n , $(Y, \varphi(x_n), \mu_n d_Y)$ has a converging subsequence whose limit T' is quasisymmetric to T.

Theorem (Kinneberg [3])

A doubling metric circle C is a quasicircle if and only if every weak tangent of C is quasisymmetric to $(\mathbb{R}, 0)$.

Theorem (W. [4])

For all $n \ge 2$, there exists a doubling, LLC metric space X homeomorphic to \mathbb{S}^n such that every weak tangent of X is isometric to $(\mathbb{R}^n, 0)$ but X is not quasisymmetric to \mathbb{S}^n .

Theorem (Bonk, Kleiner [1])

Suppose Z is a uniformly perfect, doubling compact metric space, and $G \curvearrowright Z$ is a uniformly quasi-Möbius action for which the induced action $G \curvearrowright Tri(Z)$ is cocompact. If (T, p) is a weak tangent of Z, then there exists a quasi-Möbius homeomorphism $h: (\widehat{S}, \widehat{d_p}) \to Z$.

Theorem (Bonk, Kleiner [1])

Suppose Z is a uniformly perfect, doubling compact metric space, and $G \curvearrowright Z$ is a uniformly quasi-Möbius action for which the induced action $G \curvearrowright Tri(Z)$ is cocompact. If (T, p) is a weak tangent of Z, then there exists a quasi-Möbius homeomorphism $h: (\widehat{S}, \widehat{d_p}) \to Z$.

Taking G = finitely generated infinite hyperbolic group, $Z = \partial_{\infty}G$:

Corollary

Suppose $\partial_{\infty}G$ is homeomorphic to \mathbb{S}^n . If any weak tangent of $\partial_{\infty}G$ is quasisymmetric to $(\mathbb{R}^n, 0)$, then $\partial_{\infty}G$ is quasisymmetric to \mathbb{S}^n .

Theorem (Bonk, Kleiner [1])

Suppose Z is a uniformly perfect, doubling compact metric space, and $G \curvearrowright Z$ is a uniformly quasi-Möbius action for which the induced action $G \curvearrowright Tri(Z)$ is cocompact. If (T, p) is a weak tangent of Z, then there exists a quasi-Möbius homeomorphism $h: (\widehat{S}, \widehat{d_p}) \to Z$.

Taking G = finitely generated infinite hyperbolic group, $Z = \partial_{\infty}G$:

Corollary

Suppose $\partial_{\infty}G$ is homeomorphic to \mathbb{S}^n . If any weak tangent of $\partial_{\infty}G$ is quasisymmetric to $(\mathbb{R}^n, 0)$, then $\partial_{\infty}G$ is quasisymmetric to \mathbb{S}^n .

Conjecture (Cannon's conjecture)

If $\partial_{\infty}G$ is homeomorphic to \mathbb{S}^2 , then $\partial_{\infty}G$ is quasisymmetric to \mathbb{S}^2 .

 $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an expanding Thurston map i.e

- $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an expanding Thurston map i.e
 - branched covering : $\forall x \in \mathbb{S}^2, \exists$ open $U \ni x$, \exists homeo φ, ψ ,

$$egin{aligned} (U,x) & \stackrel{f}{\to} (f(U),f(x)) \ & & \downarrow^{arphi} \ & & \downarrow^{\psi} \ (\mathbb{D},0) & \stackrel{z\mapsto z^d}{\longrightarrow} (\mathbb{D},0). \end{aligned}$$

- $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an expanding Thurston map i.e
 - I branched covering
 - **2** postcritically finite: $|\{f^n(c) : n \in \mathbb{N}, c \text{ critical point}\}| < \infty$

 $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an expanding Thurston map i.e

- I branched covering
- **2** postcritically finite: $|\{f^n(c) : n \in \mathbb{N}, c \text{ critical point}\}| < \infty$
- (a) for every $x \in \mathbb{S}^2$ there exists open $x \in U \subset \mathbb{S}^2$,

 $\lim_{n\to\infty}\sup\{\text{diam }V:V\text{ connected component of }f^{-n}(U)\}=0.$

 $f: \mathbb{S}^2 \to \mathbb{S}^2$ is an expanding Thurston map i.e

- Is branched covering
- **2** postcritically finite: $|\{f^n(c) : n \in \mathbb{N}, c \text{ critical point}\}| < \infty$
- **③** for every $x \in \mathbb{S}^2$ there exists open $x \in U \subset \mathbb{S}^2$,

 $\lim_{n\to\infty}\sup\{\text{diam }V:V\text{ connected component of }f^{-n}(U)\}=0.$

2-tiles

1-tiles

0-tiles

イロン イロン イヨン イヨン æ

For general expanding Thurston maps:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

8/11

For general expanding Thurston maps:

• There exists $N \in \mathbb{N}$ and f^{N} -invariant Jordan curve C containing all postcritical points [2]. WLOG N = 1.

For general expanding Thurston maps:

- There exists $N \in \mathbb{N}$ and f^{N} -invariant Jordan curve C containing all postcritical points [2]. WLOG N = 1.
- \bigcirc C gives us 2 0-tiles.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For general expanding Thurston maps:

- There exists $N \in \mathbb{N}$ and f^{N} -invariant Jordan curve C containing all postcritical points [2]. WLOG N = 1.
- **2** \mathcal{C} gives us 2 0-tiles.
- **3** $f^{-1}(\mathcal{C})$ divides 0-tiles into 1-tiles.

(1)

For general expanding Thurston maps:

- There exists $N \in \mathbb{N}$ and f^{N} -invariant Jordan curve C containing all postcritical points [2]. WLOG N = 1.
- **2** \mathcal{C} gives us 2 0-tiles.
- **3** $f^{-1}(\mathcal{C})$ divides 0-tiles into 1-tiles.
- $f^{-n}(\mathcal{C})$ gives us *n*-tiles.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (Bonk and Meyer [2])

There exists $\Lambda > 1$ and a metric ρ on \mathbb{S}^2 that generates the topology of \mathbb{S}^2 and such that

diam_{ρ}(*n*-tile) $\approx \Lambda^{-n}$.

- ρ is a visual metric with respect to f
- Λ is the *expansion factor* of ρ .
- (\mathbb{S}^2, ρ) is a visual sphere.
- visual metric always exists for f but not unique.
- two visual spheres for *f* are snowflake equivalent, therefore quasisymmetric.

Theorem

Let f be an expanding Thurston map with no periodic critical point and ρ be a visual metric with respect to f. TFAE:

- (i) f is Thurston equivalent to a rational map.
- (ii) (\mathbb{S}^2, ρ) is a quasisphere.

(iii) Every weak tangent of (\mathbb{S}^2, ρ) is quasisymmetric to $(\mathbb{R}^2, 0)$.

(iv) Some weak tangent of (\mathbb{S}^2, ρ) is quasisymmetric to $(\mathbb{R}^2, 0)$.

(i)
$$\iff$$
 (ii) Bonk and Meyer [2].
(ii) \implies (iii) Lemma.
(iii) \implies (iv) Clear since (\mathbb{S}^2, ρ) has a weak tangent
(iv) \implies (ii) W.

- M. Bonk and B. Kleiner *Rigidity for quasi-Möbius group actions*, J. Differential Geom., **61**(1):81-106, 2002.
- M. Bonk and D. Meyer *Expanding Thurston maps*, American Mathematical Soc., 2017.
- K. Kinneberg, *Conformal dimension and boundaries of planar domains*, Trans. Amer. Math. Soc. **369**(9) 6511–6536, 2017.
- A. Wu, A metric sphere not a quasisphere but for which every weak tangent is Euclidean, arXiv:1806.02917, 2018.