On Julia sets for quasimeromorphic mappings

Luke Warren

University of Nottingham

June 29, 2018

Fatou set $\mathcal{F}(f)$ and Julia set $\mathcal{J}(f)$

Study the behaviour of sequences of iterates $(f^n(z))_{n=0}^{\infty}$ for different starting values of z.

Recall (f analytic or mero):

 $\mathcal{F}(f) := \{ z \in \hat{\mathbb{C}} : \{ f^n \} \text{ is equicontinuous on a nbhd of } z \};$

 $\mathcal{J}(f) := \hat{\mathbb{C}} \setminus \mathcal{F}(f).$ $\begin{pmatrix} & & \\ &$

 $\mathcal{F}(f)$ is 'regular', while $\mathcal{J}(f)$ is 'chaotic'.

Example and properties

 $f:\mathbb{C} o \hat{\mathbb{C}}$ trans mero, $\mathsf{card}(\mathcal{O}_f^-(\infty))\geq 3$

 $\implies \mathcal{O}_f^-(\infty)$ is infinite (Picard theorem),

 $\implies \hat{\mathbb{C}} \setminus \mathcal{O}_f^-(\infty)$ is largest open set where $\{f^n\}$ defined,

 $\implies \mathcal{F}(f) = \hat{\mathbb{C}} \setminus \overline{\mathcal{O}_f^-(\infty)} \text{ and } \mathcal{J}(f) = \overline{\mathcal{O}_f^-(\infty)} \text{ (Montel theorem)}.$

Some classic $\mathcal{J}(f)$ properties (f mero):

Non-empty, closed, infinite, perfect, completely invariant;

'Blowing-up' property: U open, $U \cap \mathcal{J}(f) \neq \varnothing \implies |\hat{\mathbb{C}} \setminus \mathcal{O}_f^+(U)| \leq 2$.

Qr and qm mappings

A continuous map $f : \mathbb{R}^d \to \mathbb{R}^d$ is quasiregular (qr) if $f \in W^1_{d,loc}(\mathbb{R}^d)$, and there is some $K_l \ge 1$ s.t.

 $||Df(x)||^{d} \leq K_{I}J_{f}(x)$ a.e.

For $K \ge 1$, f is called K-qr if the amount of local stretching is uniformly bounded by K.

 $g: \mathbb{R}^d \to \hat{\mathbb{R}}^d$ is quasimeromorphic (qm) of trans type if g or $M \circ g$ is locally qr, with $M: \hat{\mathbb{R}}^d \to \hat{\mathbb{R}}^d$ a sense-preserving Möbius transformation s.t. $M(\infty) \neq \infty$.

If g is qr and f is qr (qm), then $f \circ g$ is qr (qm) with

 $K(f \circ g) \leq K(f)K(g).$

Examples and properties of qr and qm

- Analytic functions are 1-qr; meromorphic functions are 1-qm, quasiconformal mappings are injective qr mappings.
- (Zorich, '67) Zorich map (analogue of exponential function) $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ is qr.
- (Martio, Srebro, '75) $p_d : \mathbb{R}^d \to \hat{\mathbb{R}}^d$ is a *d*-periodic qm map of trans type with an infinite number of poles.

Examples and properties of qr and qm

- Analytic functions are 1-qr; meromorphic functions are 1-qm, quasiconformal mappings are injective qr mappings.
- (Zorich, '67) Zorich map (analogue of exponential function) $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ is qr.
- (Martio, Srebro, '75) $p_d : \mathbb{R}^d \to \hat{\mathbb{R}}^d$ is a *d*-periodic qm map of trans type with an infinite number of poles.

Non-constant qr mappings are open, discrete and differentiable a.e.

Rickman proved analogue of Picard theorem for qm.

Theorem (Rickman, '80)

Let $d \ge 2$, $K \ge 1$. Then there exists a constant q = q(d, K) s.t.

(i) every qm map $f : \mathbb{R}^d \to \hat{\mathbb{R}}^d \setminus \{a_1, a_2, \dots, a_q\}$ is constant;

(ii) if $g : \mathbb{R}^d \to \hat{\mathbb{R}}^d$ is qm of trans type, then $g^{-1}(\{a_1, a_2, \dots, a_q\})$ is infinite.

Fatou and Julia sets for qr and qm?

We can iterate qr and qm mappings (when away from poles).

If f^n is K-qr for all n, then can use Fatou definition directly - uniformly quasiregular (uqr) mappings.

Fatou and Julia sets for qr and qm?

We can iterate qr and qm mappings (when away from poles).

If f^n is K-qr for all n, then can use Fatou definition directly - uniformly quasiregular (uqr) mappings.

For a general K-qr map f, f^n can be K^n -qr... this blows up as n gets large!

Conclusion: Can't define the Julia set as the complement of the Fatou set for general qr and qm maps.

Solution (Sun, Yang, '99 -'01; Bergweiler, '13; Bergweiler, Nicks, '14) For f K-qr with $K < \deg(f)$, define the Julia set using a version of the 'blowing-up' property.

Julia sets for qr in higher dimensions

For a K-qr mapping f with K < deg(f), define

 $\mathcal{J}_{\mathsf{FINITE}}(f) = \{ x : \hat{\mathbb{R}}^d \setminus \mathcal{O}_f^+(U) \text{ is finite for all nbhds } U \text{ of } x \};$ $\mathcal{J}_{\mathsf{SMALL}}(f) = \{ x : \hat{\mathbb{R}}^d \setminus \mathcal{O}_f^+(U) \text{ is 'small' for all nbhds } U \text{ of } x \}.$

'small' refers to (conformal) capacity zero, and $\mathcal{J}_{\mathsf{FINITE}}(f) \subset \mathcal{J}_{\mathsf{SMALL}}(f)$.

When $\mathcal{J}_{\text{FINITE}}(f)$ or $\mathcal{J}_{\text{SMALL}}(f)$ are non-empty, they satisfy some similar properties to their classical $\mathcal{J}(f)$ counterpart.

The 'small' condition is used since we are unable to prove that $\mathcal{J}_{\mathsf{FINITE}}(f) \neq \emptyset$ for some types of qr mapping.

Examples of qr Julia sets studied, by type

 $\mathcal{J}_{\text{SMALL}}(f): \text{ (Bergweiler, '13) } f: \hat{\mathbb{R}}^d \to \hat{\mathbb{R}}^d \text{ qr with finite degree (**);} \\ \text{ (Bergweiler, Nicks, '14) } f: \mathbb{R}^d \to \mathbb{R}^d \text{ qr of trans type, (**).}$

 $\begin{aligned} \mathcal{J}_{\mathsf{FINITE}}(f) &: (\mathsf{Sun}, \mathsf{Yang}, \mathsf{'99} - \mathsf{'01}) \ f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \ \mathsf{qr} \ \mathsf{with} \ \mathsf{finite} \ \mathsf{degree}. \\ & (\mathsf{Bergweiler}, \ \mathsf{Nicks}, \ \mathsf{'14}) \ f : \mathbb{C} \to \mathbb{C} \ \mathsf{qr} \ \mathsf{of} \ \mathsf{trans} \ \mathsf{type}. \\ & (\mathsf{Nicks}, \ \mathsf{Sixsmith}, \ (\mathsf{to} \ \mathsf{appear})) \ f : \hat{\mathbb{R}}^d \setminus S \to \hat{\mathbb{R}}^d \setminus S \ \mathsf{qr} \ \mathsf{with} \\ & S \ni \infty, \ \mathsf{card}(S) \ge 2, \ \mathsf{a} \ \mathsf{set} \ \mathsf{of} \ \mathsf{isolated} \ \mathsf{essential} \ \mathsf{singularities}. \\ & \mathsf{Denote} \ \mathsf{this} \ \mathsf{Julia} \ \mathsf{set} \ \mathsf{as} \ \mathcal{J}_S(f). \end{aligned}$

Open conjecture

For f qr, $\mathcal{J}_{SMALL}(f) = \mathcal{J}_{FINITE}(f)$.

**: extra condition on f needed for full analogous properties

Deeper look into qm trans case

Let $f : \mathbb{R}^d \to \hat{\mathbb{R}}^d$ be *K*-qm of trans type.

Obsv: No poles $\implies f : \mathbb{R}^d \to \mathbb{R}^d$ is qr of trans type.

By Rickman's theorem (ii), 2 other cases arise:

(1) $2 \leq \operatorname{card}(\mathcal{O}_{f}^{-}(\infty)) < q;$ (2) $\mathcal{O}_{f}^{-}(\infty)$ is infinite.

Deeper look into qm trans case

Let $f : \mathbb{R}^d \to \hat{\mathbb{R}}^d$ be *K*-qm of trans type.

Obsv: No poles \implies $f : \mathbb{R}^d \to \mathbb{R}^d$ is qr of trans type.

By Rickman's theorem (ii), 2 other cases arise:

(1)
$$2 \leq \operatorname{card}(\mathcal{O}_{f}^{-}(\infty)) < q;$$

(2) $\mathcal{O}_{f}^{-}(\infty)$ is infinite.

Case (1): Consider $f^q : \hat{\mathbb{R}}^d \setminus S \to \hat{\mathbb{R}}^d \setminus S$, which is qr with $S := \mathcal{O}_f^-(\infty)$ a set of isolated essential singularities. Here, $\mathcal{J}_S(f^q)$ is defined. Thus

(1) suggests
$$\mathcal{J}(f) := \mathcal{J}_{\mathcal{S}}(f^q) \cup \mathcal{S}$$
.

Case (2): Consider equivalent mero case, where $\mathcal{J}_{mero}(g) = \mathcal{O}_g^-(\infty)$. Thus

(2) suggests
$$\mathcal{J}(f) := \mathcal{O}_f^-(\infty)$$
.

Julia set for qm of trans type

Combining (1) and (2) gives the following definition.

Definition (W., '18)

For $f: \mathbb{R}^d \to \hat{\mathbb{R}}^d$ qm of trans type with at least 1 pole, the Julia set of f is given by

 $\mathcal{J}(f) = \{ x \in \hat{\mathbb{R}}^d \setminus \overline{\mathcal{O}_f^-(\infty)} : \hat{\mathbb{R}}^d \setminus \mathcal{O}_f^+(U) \text{ is finite for} \\ \text{ all nbhds } U \subset \hat{\mathbb{R}}^d \setminus \overline{\mathcal{O}_f^-(\infty)} \text{ of } x \} \cup \overline{\mathcal{O}_f^-(\infty)}.$

Results about $\mathcal{J}(f)$

Theorem (W., '18)

- (a) For $f : \mathbb{C} \to \hat{\mathbb{C}}$ trans mero with at least 1 pole, $\mathcal{J}(f)$ agrees with the usual one.
- (b) $\mathcal{J}(f)$ is non-empty, closed, infinite and perfect.
- (c) $x \in \mathcal{J}(f) \setminus \{\infty\}$ if and only if $f(x) \in \mathcal{J}(f)$.
- (d) $\mathcal{J}(f)$ intersects the escaping set I(f), the bounded orbit set BO(f) and the bungee set BU(f).
- (e) $\mathcal{J}(f) \subset \partial I(f) \cap \partial BO(f) \cap \partial BU(f)$, but examples of qm maps exist with strict inclusion.

As $\mathcal{J}(f)$ uses the finiteness condition, this provides support for the open conjecture.

Further questions

- Examples of higher dimensional qm of trans type with $\mathcal{O}_f^-(\infty)$ finite?
- Results on $\mathcal{QF}(f) := \hat{\mathbb{R}}^d \setminus \mathcal{J}(f)$?
- Structure results for $\mathcal{J}(f)$?
- Define $\mathcal{J}(f)$ for a broader class of mappings (e.g. analogue of Bolsch \mathcal{K} class for qm)?