
Eremenko’s conjecture in complex dynamics

Gwyneth Stallard
Joint work with Phil Rippon

The Open University

New Developments in Complex Analysis and Function
Theory

July 2018



Basic definitions

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.
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Examples
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f (z) = 1
4ez

F (f ) is an attracting basin
J(f ) is a Cantor bouquet of
curves
I(f ) ⊂ J(f )



Examples
Cantor bouquet

f (z) = 1
4ez

F (f ) is an attracting basin
J(f ) is a Cantor bouquet of
curves
I(f ) ⊂ J(f )



Examples
Spider’s web

f (z) = 1
2(cos z1/4 + cosh z1/4)

F (f ) has infinitely many
components
J(f ) and I(f ) are both
spiders’ webs



Examples
Spider’s web

f (z) = 1
2(cos z1/4 + cosh z1/4)

F (f ) has infinitely many
components
J(f ) and I(f ) are both
spiders’ webs



What is a spider’s web?

Definition

E is a spider’s web if
E is connected;
there is a sequence of
bounded simply connected
domains Gn with

∂Gn ⊂ E , Gn+1 ⊃ Gn,⋃
n∈N

Gn = C.



Eremenko’s conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then
J(f ) ∩ I(f ) 6= ∅;
J(f ) = ∂I(f );
all components of I(f ) are unbounded.

Eremenko’s conjectures
1. All components of I(f ) are unbounded.
2. I(f ) consists of curves to∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

Conjecture 2 holds for many functions in class B but fails for
others in class B.
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Useful properties of transcendental entire functions

the maximum modulus of f on a circle of radius r is

M(r) = max
|z|=r

|f (z)|

the minimum modulus of f on a circle of radius r is

m(r) = min
|z|=r
|f (z)|

the order of f is

lim sup
r→∞

log log M(r)
log r

Theorem (cos πρ theorem)

If f has order ρ < 1/2 and ε > 0, then there exists c ∈ (0,1)
such that, for all large r > 0,

log m(t) > (cos(πρ)− ε) log M(t), for some t ∈ (r c , r).
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The fast escaping set
Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko’s conjecture has been made
by studying fast escaping points.

If R is sufficiently large, then Mn(R)→∞ as n→∞ and we
consider the following set of fast escaping points.

Definition

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) ∀ n ∈ N}

The fast escaping set A(f ) consists of this set and all its
pre-images.

Theorem (Rippon and Stallard, 2005)

All the components of AR(f ) are unbounded and hence I(f ) has
at least one unbounded component.
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For each transcendental entire function there exists R > 0 s.t.

AR(f ) contains uncountably
many disjoint unbounded

connected sets

or

AR(f ) is a spider’s web.
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Fast escaping spiders’ webs

Theorem (Osborne, Rippon and Stallard)

If there exist r > R > 0 such that

mn(r) > Mn(R)→∞,

then AR(f ) is a spider’s web and hence I(f ) is a spider’s web.

Method of proof
We show that
if a curve γ meets {z : |z| = r} and {z : |z| = R}
then the images of the curve stretch repeatedly and

γ ∩ AR(f ) 6= ∅.

Hence AR(f ) is a spider’s web.
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Examples of fast escaping spiders’ webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists
r > R > 0 such that

mn(r) > Mn(R)→∞,

and hence AR(f ) and I(f ) are spiders’ webs, if

1 f has very small growth
2 f has order ρ < 1/2 and regular growth
3 f has Fabry gaps and regular growth
4 f has the pits effect and regular growth
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Escaping spider’s webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then

I(f ) is a spider’s web, provided that

mn(r)→∞ for some r > 0.

Theorem (Nicks, Rippon and Stallard)

If f has finite order, genus at least two and all the zeros are
real, then

m(r)→ 0 as r →∞.

In fact there exists θ such that

f (reiθ)→ 0 as r →∞.
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Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2, and

mn(r)→∞ for some r > 0,

then we take a curve γn meeting

{z : |z| = cn} and {z : |z| = mn(r)}.

Either the images of γn stretch repeatedly with

f (γn) ⊃ γn+1

and so γn meets an escaping point

or at some step the image does not stretch sufficiently and we
deduce that it winds round the origin and meets AR(f ).

We deduce that I(f ) is a spider’s web.
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Conjecture

Conjecture If f is transcendental entire and

mn(r)→∞ for some r > 0,

then I(f ) is a spider’s web.

This condition on mn(r) is satisfied for many functions including
all functions of order less than 1/2.

To hear how this is related to a conjecture of Noel Baker, come
to Phil Rippon’s talk tomorrow!
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