Eremenko's conjecture in complex dynamics

Gwyneth Stallard Joint work with Phil Rippon

The Open University

New Developments in Complex Analysis and Function Theory July 2018

Basic definitions

Definition

The Fatou set (or stable set) is
$F(f)=\left\{z:\left(f^{n}\right)\right.$ is equicontinuous in some neighbourhood of $\left.z\right\}$.

Basic definitions

Definition

The Fatou set (or stable set) is
$F(f)=\left\{z:\left(f^{n}\right)\right.$ is equicontinuous in some neighbourhood of $\left.z\right\}$.

Definition

The Julia set (or chaotic set) is

$$
J(f)=\mathbb{C} \backslash F(f)
$$

Basic definitions

Definition

The Fatou set (or stable set) is
$F(f)=\left\{z:\left(f^{n}\right)\right.$ is equicontinuous in some neighbourhood of $\left.z\right\}$.

Definition

The Julia set (or chaotic set) is

$$
J(f)=\mathbb{C} \backslash F(f)
$$

Definition

The escaping set is

$$
I(f)=\left\{z: f^{n}(z) \rightarrow \infty \text { as } n \rightarrow \infty\right\} .
$$

Examples

Cantor bouquet

$$
f(z)=\frac{1}{4} e^{z}
$$

Examples

Cantor bouquet

$$
f(z)=\frac{1}{4} e^{z}
$$

- $F(f)$ is an attracting basin
- $J(f)$ is a Cantor bouquet of curves
- $l(f) \subset J(f)$

Examples

Spider's web

$$
f(z)=\frac{1}{2}\left(\cos z^{1 / 4}+\cosh z^{1 / 4}\right)
$$

Examples

Spider's web

$$
f(z)=\frac{1}{2}\left(\cos z^{1 / 4}+\cosh z^{1 / 4}\right)
$$

- $F(f)$ has infinitely many components
- $J(f)$ and $I(f)$ are both spiders' webs

What is a spider's web?

Definition

E is a spider's web if

- E is connected;
- there is a sequence of bounded simply connected domains G_{n} with

$$
\begin{gathered}
\partial G_{n} \subset E, G_{n+1} \supset G_{n} \\
\bigcup_{n \in \mathbb{N}} G_{n}=\mathbb{C}
\end{gathered}
$$

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $l(f)$ consists of curves to ∞.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $I(f)$ consists of curves to ∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)
Conjecture 2 holds for many functions in class \mathcal{B}

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $I(f)$ consists of curves to ∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)
Conjecture 2 holds for many functions in class \mathcal{B} but fails for others in class \mathcal{B}.

Useful properties of transcendental entire functions

Useful properties of transcendental entire functions

- the maximum modulus of f on a circle of radius r is

$$
M(r)=\max _{|z|=r}|f(z)|
$$

Useful properties of transcendental entire functions

- the maximum modulus of f on a circle of radius r is

$$
M(r)=\max _{|z|=r}|f(z)|
$$

- the minimum modulus of f on a circle of radius r is

$$
m(r)=\min _{|z|=r}|f(z)|
$$

Useful properties of transcendental entire functions

- the maximum modulus of f on a circle of radius r is

$$
M(r)=\max _{|z|=r}|f(z)|
$$

- the minimum modulus of f on a circle of radius r is

$$
m(r)=\min _{|z|=r}|f(z)|
$$

- the order of f is

$$
\lim \sup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}
$$

Useful properties of transcendental entire functions

- the maximum modulus of f on a circle of radius r is

$$
M(r)=\max _{|z|=r}|f(z)|
$$

- the minimum modulus of f on a circle of radius r is

$$
m(r)=\min _{|z|=r}|f(z)|
$$

- the order of f is

$$
\lim \sup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}
$$

Theorem ($\cos \pi \rho$ theorem)
If f has order $\rho<1 / 2$ and $\epsilon>0$, then there exists $c \in(0,1)$ such that, for all large $r>0$,

$$
\log m(t)>(\cos (\pi \rho)-\epsilon) \log M(t), \text { for some } t \in\left(r^{c}, r\right)
$$

Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko's conjecture has been made by studying fast escaping points.

Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko's conjecture has been made by studying fast escaping points.

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$ and we consider the following set of fast escaping points.

The fast escaping set

Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko's conjecture has been made by studying fast escaping points.

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$ and we consider the following set of fast escaping points.

Definition

$A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R) \forall n \in \mathbb{N}\right\}$

The fast escaping set

Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko's conjecture has been made by studying fast escaping points.

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$ and we consider the following set of fast escaping points.

Definition
$A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R) \forall n \in \mathbb{N}\right\}$
The fast escaping set $A(f)$ consists of this set and all its pre-images.

The fast escaping set

Bergweiler and Hinkkanen, 1999

Significant progress on Eremenko's conjecture has been made by studying fast escaping points.

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$ and we consider the following set of fast escaping points.

Definition

$A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R) \forall n \in \mathbb{N}\right\}$
The fast escaping set $A(f)$ consists of this set and all its pre-images.

Theorem (Rippon and Stallard, 2005)

All the components of $A_{R}(f)$ are unbounded and hence $I(f)$ has at least one unbounded component.

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists $R>0$ s.t.

"Cantor bouquets" or "spiders’ webs"

Theorem

For each transcendental entire function there exists $R>0$ s.t.

$A_{R}(f)$ contains uncountably many disjoint unbounded connected sets

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists $R>0$ s.t.

$A_{R}(f)$ contains uncountably many disjoint unbounded connected sets

$A_{R}(f)$ is a spider's web.

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)
If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)
If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

then $A_{R}(f)$ is a spider's web and hence

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)
If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

then $A_{R}(f)$ is a spider's web and hence $I(f)$ is a spider's web.

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)

If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty
$$

then $A_{R}(f)$ is a spider's web and hence $I(f)$ is a spider's web.

Method of proof

We show that
if a curve γ meets $\{z:|z|=r\}$ and $\{z:|z|=R\}$

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)

If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty
$$

then $A_{R}(f)$ is a spider's web and hence $I(f)$ is a spider's web.

Method of proof

We show that
if a curve γ meets $\{z:|z|=r\}$ and $\{z:|z|=R\}$ then the images of the curve stretch repeatedly and

$$
\gamma \cap A_{R}(f) \neq \emptyset .
$$

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)

If there exist $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty
$$

then $A_{R}(f)$ is a spider's web and hence $I(f)$ is a spider's web.

Method of proof

We show that
if a curve γ meets $\{z:|z|=r\}$ and $\{z:|z|=R\}$ then the images of the curve stretch repeatedly and

$$
\gamma \cap A_{R}(f) \neq \emptyset .
$$

Hence $A_{R}(f)$ is a spider's web.

Examples of fast escaping spiders' webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

and hence $A_{R}(f)$ and $I(f)$ are spiders' webs, if

Examples of fast escaping spiders' webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

and hence $A_{R}(f)$ and $I(f)$ are spiders' webs, if
$1 f$ has very small growth

Examples of fast escaping spiders' webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty
$$

and hence $A_{R}(f)$ and $I(f)$ are spiders' webs, if
$1 f$ has very small growth
$2 f$ has order $\rho<1 / 2$ and regular growth

Examples of fast escaping spiders' webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty
$$

and hence $A_{R}(f)$ and $I(f)$ are spiders' webs, if
$1 f$ has very small growth
$2 f$ has order $\rho<1 / 2$ and regular growth
3 f has Fabry gaps and regular growth

Examples of fast escaping spiders' webs

Theorem (Rippon + Stallard)

Let f be a transcendental entire function. Then there exists $r>R>0$ such that

$$
m^{n}(r)>M^{n}(R) \rightarrow \infty,
$$

and hence $A_{R}(f)$ and $I(f)$ are spiders' webs, if
$1 f$ has very small growth
$2 f$ has order $\rho<1 / 2$ and regular growth
3 f has Fabry gaps and regular growth
$4 f$ has the pits effect and regular growth

Escaping spider's webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then

Escaping spider's webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then $I(f)$ is a spider's web, provided that

Escaping spider's webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then $I(f)$ is a spider's web, provided that

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

Escaping spider's webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then $I(f)$ is a spider's web, provided that

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

Theorem (Nicks, Rippon and Stallard)

If f has finite order, genus at least two and all the zeros are real, then

$$
m(r) \rightarrow 0 \text { as } r \rightarrow \infty
$$

Escaping spider's webs

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then $I(f)$ is a spider's web, provided that

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

Theorem (Nicks, Rippon and Stallard)

If f has finite order, genus at least two and all the zeros are real, then

$$
m(r) \rightarrow 0 \text { as } r \rightarrow \infty
$$

In fact there exists θ such that

$$
f\left(r e^{i \theta}\right) \rightarrow 0 \text { as } r \rightarrow \infty
$$

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2, and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0,
$$

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2, and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0,
$$

then we take a curve γ_{n} meeting

$$
\left\{z:|z|=c_{n}\right\} \text { and }\left\{z:|z|=m^{n}(r)\right\} .
$$

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2 , and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

then we take a curve γ_{n} meeting

$$
\left\{z:|z|=c_{n}\right\} \text { and }\left\{z:|z|=m^{n}(r)\right\} .
$$

Either the images of γ_{n} stretch repeatedly with

$$
f\left(\gamma_{n}\right) \supset \gamma_{n+1}
$$

and so γ_{n} meets an escaping point

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2 , and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

then we take a curve γ_{n} meeting

$$
\left\{z:|z|=c_{n}\right\} \text { and }\left\{z:|z|=m^{n}(r)\right\} .
$$

Either the images of γ_{n} stretch repeatedly with

$$
f\left(\gamma_{n}\right) \supset \gamma_{n+1}
$$

and so γ_{n} meets an escaping point
or at some step the image does not stretch sufficiently and we deduce that it winds round the origin and meets $A_{R}(f)$.

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2 , and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

then we take a curve γ_{n} meeting

$$
\left\{z:|z|=c_{n}\right\} \text { and }\left\{z:|z|=m^{n}(r)\right\} .
$$

Either the images of γ_{n} stretch repeatedly with

$$
f\left(\gamma_{n}\right) \supset \gamma_{n+1}
$$

and so γ_{n} meets an escaping point
or at some step the image does not stretch sufficiently and we deduce that it winds round the origin and meets $A_{R}(f)$.

We deduce that $I(f)$ is a spider's web.

Conjecture

Conjecture If f is transcendental entire and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

then $I(f)$ is a spider's web.

Conjecture

Conjecture If f is transcendental entire and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0
$$

then $I(f)$ is a spider's web.
This condition on $m^{n}(r)$ is satisfied for many functions including all functions of order less than $1 / 2$.

Conjecture

Conjecture If f is transcendental entire and

$$
m^{n}(r) \rightarrow \infty \text { for some } r>0,
$$

then $I(f)$ is a spider's web.
This condition on $m^{n}(r)$ is satisfied for many functions including all functions of order less than $1 / 2$.

To hear how this is related to a conjecture of Noel Baker, come to Phil Rippon's talk tomorrow!

