Eremenko's conjecture in complex dynamics

Gwyneth Stallard Joint work with Phil Rippon

The Open University

New Developments in Complex Analysis and Function Theory July 2018

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Definition

The Julia set (or chaotic set) is

 $J(f) = \mathbb{C} \setminus F(f).$

Basic definitions

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Definition

The Julia set (or chaotic set) is

$$J(f) = \mathbb{C} \setminus F(f).$$

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

 $f(z) = \frac{1}{4}e^{z}$

 $f(z) = \frac{1}{4}e^{z}$

- *F*(*f*) is an attracting basin
- *J*(*f*) is a Cantor bouquet of curves

• *I*(*f*) ⊂ *J*(*f*)

$$f(z) = \frac{1}{2}(\cos z^{1/4} + \cosh z^{1/4})$$

Examples Spider's web

 $f(z) = \frac{1}{2}(\cos z^{1/4} + \cosh z^{1/4})$

- *F*(*f*) has infinitely many components
- *J*(*f*) and *I*(*f*) are both spiders' webs

What is a spider's web?

Definition

- E is a **spider's web** if
 - *E* is connected;
 - there is a sequence of bounded simply connected domains *G_n* with

$$\partial \textit{G}_n \subset \textit{E}, \textit{ G}_{n+1} \supset \textit{G}_n,$$

 $\bigcup_{n\in\mathbb{N}}G_n=\mathbb{C}.$

▲ロと▲聞と▲語と▲語と「語」▲

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

・ コット (雪) (小田) (コット 日)

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

1. All components of I(f) are unbounded.

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

イロト 不良 とくほ とくほう 二日

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

・ コット (雪) (小田) (コット 日)

Conjecture 2 holds for many functions in class B

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

・ コット (雪) (小田) (コット 日)

Conjecture 2 holds for many functions in class \mathcal{B} but fails for others in class \mathcal{B} .

• the maximum modulus of f on a circle of radius r is

$$M(r) = \max_{|z|=r} |f(z)|$$

• the maximum modulus of f on a circle of radius r is

$$M(r) = \max_{|z|=r} |f(z)|$$

• the minimum modulus of f on a circle of radius r is

$$m(r) = \min_{|z|=r} |f(z)|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• the **maximum modulus** of *f* on a circle of radius *r* is

$$M(r) = \max_{|z|=r} |f(z)|$$

• the **minimum modulus** of *f* on a circle of radius *r* is

$$m(r) = \min_{|z|=r} |f(z)|$$

the order of f is

$$\limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$

• the **maximum modulus** of *f* on a circle of radius *r* is

$$M(r) = \max_{|z|=r} |f(z)|$$

• the **minimum modulus** of *f* on a circle of radius *r* is

$$m(r) = \min_{|z|=r} |f(z)|$$

the order of f is

$$\limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}$$

Theorem (cos $\pi \rho$ theorem)

If f has order $\rho < 1/2$ and $\epsilon > 0$, then there exists $c \in (0, 1)$ such that, for all large r > 0,

 $\log m(t) > (\cos(\pi \rho) - \epsilon) \log M(t)$, for some $t \in (r^c, r)$.

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$ and we consider the following set of fast escaping points.

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$ and we consider the following set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \forall n \in \mathbb{N}\}$$

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$ and we consider the following set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \forall n \in \mathbb{N}\}$$

The fast escaping set A(f) consists of this set and all its pre-images.

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$ and we consider the following set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \ \forall \ n \in \mathbb{N}\}$$

The fast escaping set A(f) consists of this set and all its pre-images.

Theorem (Rippon and Stallard, 2005)

All the components of $A_R(f)$ are unbounded and hence I(f) has at least one unbounded component.

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 s.t.

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 s.t.

A_R(f) contains uncountably many disjoint unbounded connected sets

日本 10 アメモネ 1 モス・モー

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 s.t.

A_R(f) contains uncountably many disjoint unbounded connected sets or

Fast escaping spiders' webs

Theorem (Osborne, Rippon and Stallard)

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

then $A_R(f)$ is a spider's web and hence

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

then $A_R(f)$ is a spider's web and hence I(f) is a spider's web.

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

・ロット (雪) (日) (日) (日)

then $A_R(f)$ is a spider's web and hence I(f) is a spider's web.

Method of proof

We show that if a curve γ meets {z : |z| = r} and {z : |z| = R}

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

then $A_R(f)$ is a spider's web and hence I(f) is a spider's web.

Method of proof

We show that if a curve γ meets $\{z : |z| = r\}$ and $\{z : |z| = R\}$ then the images of the curve stretch repeatedly and

 $\gamma \cap \boldsymbol{A}_{\boldsymbol{R}}(f) \neq \emptyset.$

< ロ ト < 得 ト < 三 ト < 三 ト つ Q (C)</p>

If there exist r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

then $A_R(f)$ is a spider's web and hence I(f) is a spider's web.

Method of proof

We show that if a curve γ meets $\{z : |z| = r\}$ and $\{z : |z| = R\}$ then the images of the curve stretch repeatedly and

$$\gamma \cap A_R(f) \neq \emptyset.$$

Hence $A_R(f)$ is a spider's web.

Let f be a transcendental entire function. Then there exists r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

・ コット (雪) (小田) (コット 日)

Let f be a transcendental entire function. Then there exists r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

・ コット (雪) (小田) (コット 日)

and hence $A_R(f)$ and I(f) are spiders' webs, if

1 f has very small growth

Let f be a transcendental entire function. Then there exists r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

・ コット (雪) (小田) (コット 日)

- 1 f has very small growth
- **2** f has order $\rho < 1/2$ and regular growth

Let f be a transcendental entire function. Then there exists r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

イロト 不良 とくほ とくほう 二日

- 1 f has very small growth
- **2** f has order $\rho < 1/2$ and regular growth
- 3 f has Fabry gaps and regular growth

Let f be a transcendental entire function. Then there exists r > R > 0 such that

 $m^n(r) > M^n(R) \to \infty,$

イロト 不良 とくほ とくほう 二日

- 1 f has very small growth
- **2** f has order $\rho < 1/2$ and regular growth
- 3 f has Fabry gaps and regular growth
- 4 f has the pits effect and regular growth

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then I(f) is a spider's web, provided that

イロト 不良 とくほ とくほう 二日

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then I(f) is a spider's web, provided that

 $m^n(r) \to \infty$ for some r > 0.

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then I(f) is a spider's web, provided that

 $m^n(r) \to \infty$ for some r > 0.

Theorem (Nicks, Rippon and Stallard)

If f has finite order, genus at least two and all the zeros are real, then

 $m(r) \rightarrow 0$ as $r \rightarrow \infty$.

Theorem (Nicks, Rippon and Stallard)

If f has finite order, is real and all the zeros are real, then I(f) is a spider's web, provided that

 $m^n(r) \to \infty$ for some r > 0.

Theorem (Nicks, Rippon and Stallard)

If f has finite order, genus at least two and all the zeros are real, then

$$m(r) \rightarrow 0$$
 as $r \rightarrow \infty$.

In fact there exists θ such that

$$f(\mathit{re}^{i\theta})
ightarrow 0$$
 as $r
ightarrow \infty$.

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2, and

 $m^n(r) \to \infty$ for some r > 0,

Method of proof when genus is less than two

If f is real, all the zeros are real, f has genus less than 2, and

 $m^n(r) \to \infty$ for some r > 0,

then we take a curve γ_n meeting

$$\{z: |z| = c_n\}$$
 and $\{z: |z| = m^n(r)\}.$

If f is real, all the zeros are real, f has genus less than 2, and

 $m^n(r) \to \infty$ for some r > 0,

then we take a curve γ_n meeting

$$\{z: |z| = c_n\}$$
 and $\{z: |z| = m^n(r)\}.$

Either the images of γ_n stretch repeatedly with

 $f(\gamma_n) \supset \gamma_{n+1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and so γ_n meets an escaping point

If f is real, all the zeros are real, f has genus less than 2, and

 $m^n(r) \to \infty$ for some r > 0,

then we take a curve γ_n meeting

$$\{z: |z| = c_n\}$$
 and $\{z: |z| = m^n(r)\}.$

Either the images of γ_n stretch repeatedly with

 $f(\gamma_n) \supset \gamma_{n+1}$

and so γ_n meets an escaping point

or at some step the image does not stretch sufficiently and we deduce that it winds round the origin and meets $A_R(f)$.

If f is real, all the zeros are real, f has genus less than 2, and

 $m^n(r) \to \infty$ for some r > 0,

then we take a curve γ_n meeting

$$\{z: |z| = c_n\}$$
 and $\{z: |z| = m^n(r)\}.$

Either the images of γ_n stretch repeatedly with

 $f(\gamma_n) \supset \gamma_{n+1}$

and so γ_n meets an escaping point

or at some step the image does not stretch sufficiently and we deduce that it winds round the origin and meets $A_R(f)$.

We deduce that I(f) is a spider's web.

Conjecture If f is transcendental entire and

$$m^n(r) \to \infty$$
 for some $r > 0$,

then I(f) is a spider's web.

Conjecture If f is transcendental entire and

$$m^n(r) \to \infty$$
 for some $r > 0$,

then I(f) is a spider's web.

This condition on $m^n(r)$ is satisfied for many functions including all functions of order less than 1/2.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

Conjecture If f is transcendental entire and

$$m^n(r) \to \infty$$
 for some $r > 0$,

then I(f) is a spider's web.

This condition on $m^n(r)$ is satisfied for many functions including all functions of order less than 1/2.

To hear how this is related to a conjecture of Noel Baker, come to Phil Rippon's talk tomorrow!