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Riemann Mapping Theorem
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Conformal Welding

Apply the Riemann Mapping Theorem to
map the inside of the shape to the unit disc

—

The Riemann mapping function f is continuous on the boundary.



Now map the outside to the outside of
the unit disc.

Then function g is also continuous on the boundary.



Now g/ ' maps the boundary of the unit
disc onto itself.
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Determining Similarities _
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Distinguishing Differences
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Let I be a Jordan curve in the complex plane C and let _ and
Q. denote the bounded and unbounded components of C\ T,
where C is the complex sphere. Then Q_ and Q, are simply
connected domains and therefore, by the Riemann mapping
theorem, there exist maps p_ : D — Q_ and ¢y : Dy — Qy,
where D = {z : |z| < 1} is the unit disk and D, = C \ D.

We suppose that ¢ is normalized by conditions ¢ (c0) = oo,
¢! (00) > 0, where ¢/, (00) = lim,_sc p4+(2)/2z. The latter
normalization defines (4 uniquely. Each of the maps ¢_ and ¢
extends as a continuous one-to-one function onto the unit circle
T = 0D.



Therefore, the composition k = gp_T_l o w_ defines an oriented
automorphism of T. Since ¢_ is uniquely determined up to a
precomposition with a Mobius automorphism of D, the
automorphism k is also uniquely determined up to a Mobius
automorphism of D, i.e. up to a precomposition with maps
z—a
9(z) = >\1 — a3z’
The equivalence class of the automorphism k under the action of
the Mobius group of automorphisms (1) is called the fingerprint of
I". Furthermore, the fingerprint k is invariant under translations
and scalings of the curve I, i.e. under affine maps L(z) = az+ b
with a > 0, b € C. The equivalence class of a Jordan curve '
under the action of affine maps of this form is called the shape and
I" is a representative of this shape. Thus, we have a map F from
the set of all shapes into the set of all orientation preserving
homeomorphisms of T onto itself. Let S denote the class of all
smooth shapes in C and let Diff(T) denote the set of all
orientation preserving diffeomorphisms of T.

AN =1, acD. (1)



Figure: Jordan curve I and complementary domains Q_ and Q.



The following pioneering result was proved by Alexander A. Kirillov
in “"Kahler structure on the K -orbits of a group of diffeomorphisms
of the circle”, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2.

Theorem (Kirillov)

The map F is a bijection between S* and Diff(T).

In other words, Theorem 1 says that Diff(T) parameterizes the set
S! of all smooth shapes.



Image Recognition

David Mumford and Eitan Sharon
use Fingerprints for
2-D image recognition.

They recognize shapes by their
welding maps.
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Welding

We can go from fingerprint to shape by gluing
the inside and outside of the disc unevenly.




Welding

The welding will distort the circle
into the new shape.




Stereographic Projection

If we project to the sphere, we can see this as
gluing two half- spheres together.

o
@

Weld the halves back together by attaching x
in the lower half to ¢(x) in the upper half.




Preserving Conformal Structure
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Preserving Conformal Structure
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Discrete Conformal Maps
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Discrete Conformal Maps

Circle Packing




Discrete Conformal Maps
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Discrete Conformal Maps
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Polynomial Lemniscates

The set Diff(T) is rather big. So, Ebenfeld, Khavinson, and
Shapiro studied possible parameterizations of fingerprints of
polynomial lemniscates. A lemniscate of a polynomial P(z) at level
c > 0 is defined as Lp(c) = {z: |P(z)| = c}. Later on, we will
consider also rational lemniscates and lemniscates associated with
nonconstant meromorphic functions. The class of polynomial
lemniscates is much smaller that ST, nevertheless, by the Hilbert
theorem it still can be used to approximate any Jordan shape. The
following theorem of Ebenfeld, Khavinson, and Shapiro
characterizes exactly which elements of Diff(T) appear to be the
fingerprints of polynomial lemniscates.



Theorem (P. Ebenfelt, D. Khavinson, Harold Shapiro)

Let P(z) = chz" + cn_12" 1 + ... + co be a polynomial of degree
n with ¢, > 0 such that Lp(1) is analytic and connected and let
k : T — T be a fingerprint of Lp(1). Then k(z) is given by the
equation

(k(2))" = B(2), ()

where B(z) is a Blaschke product of degree n,

n
; Z — agk
B — [[e%
(2)=e H 1—3;z’
k=1

with some real o, where a, = ¢~"1(Cx) and (1, ..., C, are the
zeroes of P(z) counting multiplicities.

Conversely, given any Blaschke product of degree n, there is a
polynomial P(z) of the same degree whose lemniscate Lp(1) is
analytic and connected and has k(z) = B(z)l/" as its fingerprint.
Moreover, P(z) is unique up to precomposition with an affine map
of the form L(z) = az+ b with a> 0 and b € C.



Peter Ebenfelt, Dima Khavinson and Harold Shapiro suggested
that their method can be extended further to study lemniscates of
rational functions.



Peter Ebenfelt, Dima Khavinson and Harold Shapiro suggested
that their method can be extended further to study lemniscates of
rational functions.

Their proof of previous theorem is rather involved. A shorter proof
was given by Malik Younsi who also proved a counterpart of
Ebenfelt-Khavinson-Shapiro for the case of rational lemniscates.



Fingerprints of Rational Lemniscates

Theorem (M. Younsi)

Let R(z) be a rational function of degree n with R(c0) = oo such
that its lemniscate Lg(1) = {z : |R(z)| = 1} is analytic and
connected and let k : T — T be a fingerprint of Lg(1). Then k(z)
is given by a solution to the functional equation

Aok =B, (3)

where A(z) and B(z) are Blaschke products of degree n and

A(o0) = 0.

Conversely, given any solution k(z) to a functional equation

Aok = B, where A(z) and B(z) are Blaschke products of degree n
and A(oo) = oo, there exist a rational function R(z) of degree n
with R(0c0) = oo whose lemniscate Lg(1) is analytic and connected
and has k(z) as its fingerprint.



Basics of Quadratic Differentials

A quadratic differential on a domain D C C is a differential form
Q(z) dz? with meromorphic Q(z) and with conformal
transformation rule

Q1(¢) d® = Q(¢(2)) (¢(2))

where ¢ = ¢(z) is a conformal map from D onto a domain G in
the extended plane of the parameter (. Then zeros and poles of
Q(z) are critical points of Q(z) dz?, in particular, zeros and simple
poles are finite critical points and poles of order greater than 1 are
infinite critical points of Q(z) dz?. A trajectory (respectively,
orthogonal trajectory) of Q(z) dz? is a closed analytic Jordan curve
or maximal open analytic arc v C D such that

2
dz>,

Q(z) dz?> >0 along v (respectively, Q(z) dz?> <0 along 7).



Trajectories

A trajectory v is called critical if at least one of its end points is a
finite critical point of Q(z) dz2. If ~ is a rectifiable arc in D then
its Q-length is defined by |y|q = [ |Q(2)[*/? |dz|. The important
property of quadratic differentials is that transformation rule
respects trajectories, orthogonal trajectories and their Q-lengthes,
as well as it respects critical points together with there
multiplicities and trajectory structure nearby.
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Fingerprints and Quadratic Differentials

Returning to fingerprints, suppose that I is a piece-wise smooth
Jordan curve in the plane C of the parameter ¢ and that Q(¢) d¢?
is a quadratic differential on some neighborhood G of I'. The best
case scenario is when G = C. More generally, we may assume,
without loss of generality, that G is a doubly connected domain
bounded by Jordan analytic curves and that I separates boundary
components of G. Let Q_(z) dz? and @, (z) dz? denote pullbacks
of Q(¢) d¢? under the conformal maps ¢ = p_(z) and ¢ = ¢4 (2)
defined in Section 1 and let 7_(¢) = ¢=1(¢) and 74(¢) = ¥ ().
Then

QR(C)dC? = Q_(T_(O)(.(¢))*d¢® forceQ_nNT

and

Q) d¢® = Qu(m=(O)(T(Q))? d¢? for (e QunT.



Since I is piece-wise smooth it follows that each of the maps
7_(¢) and 74(¢) and their derivatives 7/ ({) and 7/ ({) can be
extended by continuity to any smooth arc of I'. If I' is smooth at ¢
then previous equations imply that

Q- (T ()T dC = Qu(T(O))(TL(¢))? d 2.
Changing variable via ( = ¢_(z), we obtain equivalent equation
Q-(2) dz* = Q. (k(2))(K'(2))* d2?,

which holds for all points z € T such that ¢_(z) belongs to a
smooth arc of I'. Here k = 5911 o @_ is homeomorphism from T
onto itself and therefore it is a fingerprint of .



Taking square roots of both sides and then integrating along the
unit circle, we obtain

/ZZ V Q. (k(2))K(2) dz = '/ZZ vV Q_(z) dz,
where

zo=¢e" z=1¢" with0<6y<2m 6g<0<6b+2r

and integration is taken along a circular arc

(Ao, 0) = {e': 6y <t <6}



Main Lemma

The following lemma summarizes simple observations made above
for the case when infinite critical points are absent.

Lemma

Let T be a piece-wise smooth Jordan curve and let Q_(z) dz> and
Q. (z) dz? be pullbacks of the quadratic differential Q(¢) d¢?
introduced above. If T does not contain infinite critical points of
Q(¢) d¢? then the fingerprint k : T — T of T is given by a solution
to the functional equation

Aok =8, (%)

where

z

Az = | Vi@ dz Bz) = / VO (@dz ()

Jk(20)

appropriately chosen branches of the radicals.



Some Difficulties

We admit here that our main equation is of little practical use
unless we know how to find functions A(z) and B(z) or,
equivalently, how to construct quadratic differentials Q_(z) dz?
and Q. (z)dz?. In general, such construction looks problematic.
Rare cases when this is possible include cases of polynomial and
rational lemniscates. Below, we explain how to find a general form
of the quadratic differentials Q_(z) dz? and Q. (z) dz? assuming
some additional assumptions.

Namely, we suppose now that a quadratic differential Q(() d¢?is
defined on the whole complex sphere C. Then, of course, Q(¢)isa
rational function. Furthermore, we suppose that I' is a Jordan
curve consisting of a finite number of arcs, 71, ..., vm, of
trajectories and/or orthogonal trajectories of Q(¢) d¢ and their end
points.



(1)

Possible structure of I near a point (p € T
where two arcs meet.

If o is a regular point of @(¢) d(?, then one of the arcs 3
and 7, is an arc of a trajectory and the other one is an arc of
an orthogonal trajectory. In this case, v1 and =5 form a corner
of opening 7/2 with respect to one of the domains ©_ and
Q. and a corner of opening 37 /2 with respect to the other
one.

If Co is a zero of Q(¢) d¢? of order n then arcs v and 7 form
an angle of opening wk/(n + 2) with some integer k,

0 < k < 2(n+2). Moreover, if k is odd then one of the arcs
~1, 2 is an arc of a trajectory and the other one is an arc of
an orthogonal trajectory. If k is even then both v and ~» are
either arcs of trajectories or arcs of orthogonal trajectories.

If o is a simple pole, then one of the arcs 41 and ~, is an arc
of a trajectory and the other one is an arc of an orthogonal
trajectory and I is analytic at (p.



(4) If (o is a pole of order two then both v; and ~, are either arcs

of trajectories or arcs of orthogonal trajectories. If they are
arcs of trajectories then Q(() dz? has radial or spiral structure
of trajectories near (p and if they are arcs of orthogonal
trajectories Q(() dz? has circular or spiral structure of
trajectories. In case of radial or circular structure of
trajectories, /1 and 7> can form any angle v, 0 < v < 2. In
case of spiral structure of trajectories, v1 and 42 in a
neighborhood of (p look like logarithmic spirals and do not
form any angle at (g.

Finally, if (o is a pole of order n > 3, then 1 and ~» can form
any angle of opening wk/(n — 2) with some integer k,

0 < k <2(n—2). Moreover, if k is odd then one of the arcs

~1, Y2 is an arc of a trajectory and the other one is an arc of

an orthogonal trajectory. If k is even then both ¢ and ~» are
either arcs of trajectories or arcs of orthogonal trajectories.



Q+

(a) o=m/2 (®) a=3m/4

Figure: I consisting of two spirals with different «.
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Figure: I consisting of three critical trajectories.
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0=1/3. B=0 p=1/3. B=/4 0=1/3. B=rt

Figure: I consisting of one regular trajectory.



Possible critical points of @ (z)dz? on T.

(a) If o is a regular point of Q(¢) d¢? where I'_ forms an angle
7/2, then zo = 7_({o) is a simple pole of Q_(z) dz?.

(b) If (o is a regular point of Q(¢) d(? where I'_ forms an angle
37/2, then zg = 7_((o) is a simple zero of Q_(z) dz°.

(c) If (o is a zero of Q(C) dC? of order n where I'_ forms an angle
nﬂ+k2' then zo = 7_((o) is a simple pole of Q_(z) dz2ifk=1,
a regular point if k = 2, and a zero of order k — 2 if
3< k<2n+3.

(d) If (o is a simple pole of Q(() dz?, then zg = _((o) is a

simple pole of Q_(z) dz°.




(e)

If (o is a pole of order 2 of Q(¢) dz® and ~1, 72 are arcs of
orthogonal trajectories, then zp = ¢_({p) is a pole of
Q_(z) dz? of order 2 with the circular trajectory structure.

If (o is a pole of order 2 of Q({) dz? and ~1, 72 are arcs of
trajectories, then zo = ¢_((o) is a pole of Q_(2) dz? of order
2 with a radial trajectory structure.

If (o is a pole of order n > 3 of Q(¢) dz? where ['_ forms an
angle Z5 then zg = ¢_((o) is a pole of Q_(z) dz? of order
k+2,0<k<2(n—2). In particular, if k =0 and ~1, 72 are
arcs of trajectories, then zy is a pole of Q_(2) dz? of order 2
with radial trajectory structure and if k =0 and ~q, > are
arcs of orthogonal trajectories, then z is a pole of Q_(z) dz?
of order 2 with circular trajectory structure.



Figure: Trajectory structure in the case (b).



Unit circle consisting of arcs of trajectories

Now, let B%(z) = HZO:1(Z — ¢ )(1 — &z) and

B>(z) = [13=(z — px)(1 — Pxz), where the products are taken
over all zeros (counting multiplicity) of @_(z) dz? in the unit disk
D and over all poles (counting multiplicity) of Q_(z) dz? in the
unit disk D, respectively. Also, let

PO (z) = HZEI e~ /(m+ex)/2(z — e and

P> (z) = [ e~ (+%)/2(z — ei), where the products are
taken over all zeros (counting multiplicity) of Q_(z) dz? on the
unit circle T and over all poles (counting multiplicity) of Q@_(z) dz?
on the unit circle T, respectively. Let B (z), B(z), P}(z), and
P3°(z) denote similar products for the quadratic differential

Q. (z) dz? and let ny, nL, mg, mL denote the number of terms

o

in the corresponding products.



Forms of Quadratic Differentials

In notations introduced above, the quadratic differentials
Q@_(z) dz? and Q. (z) dz® can be written as

PY(2)B%(2) PL(2)Bi(2)

C.—— 2 dz’, Q(z)dz> = Cy ==
P>(z)B*>(z) P

Q- (2) 7" - P B @)

with some real nonzero constants C_ and Cj.



Main Theorem on Fingerprints

We note that our conditions imply that quadratic differentials
defined above are real on the unit circle except corresponding sets
of their critical points (which may be empty). Combining this with
our main lemma, we obtain the following.

Theorem

Let Q(¢) d(? be a quadratic differential on C and let T be a
Jordan curve free of infinite critical points of Q(() d¢? which
consists of a finite number of arcs of trajectories and/or orthogonal
trajectories of Q(¢) d¢ and their end points. Then the fingerprint
k: T — T of [ is given by a solution to the functional equation (*)
with A(z) and B(z) defined by (**) and Q_(z) z? and Q. (z) dz?
defined above.



Coordinated Quadratic Differentials

The converse statement for this theorem, similar to converse
statements of theorems proved by P. Ebenfelt, D. Khavinson and
H.S. Shapiro or M. Younsi will require additional restrictions which
are discussed below.

Definition

We will say that quadratic differentials Q_(z) dz? and Q(z) dz?
are coordinated on T if their systems of arcs a,..., ) and

af. e ,a;; have the same number of arcs and if they can be
enumerated in the counter clock-wise direction on T in such a way
that the following conditions are satisfied:

(a) @_(2)dz*>>0on o; if and only if Q,(z)dz* > 0on a}.

(b) z is an infinite critical point of Q_(2) dz* if and only if z" is
an infinite critical point of Q,(z)dz°.

(c) If |0 |q_ is finite then [a |q_ = \aﬂm.



Converse Statement

Theorem

Suppose that the quadratic differentials Q_(z) dz> and Q,(z) dz*
are coordinated on T. Then there is a quadratic differential

Q(C) d¢? defined on C and a closed Jordan curve I consisting of
arcs of trajectories and/or orthogonal trajectories of Q(¢) d¢ such
that the quadratic differentials Q_(z) dz? and Q. (z) dz? are
pullbacks of the quadratic differential Q(¢) d(? under appropriate
mappings p— and ¢ associated with T.



Lemniscates.

Let f(z) be a nonconstant meromorphic function on a domain
D c C. For 0 < ¢ < o, the lemniscate of 7(z) at level c is
defined by equation

Le(c)={ze D: |f(z)| = c}.



Lemniscates and Tangent Vectors.

Let L (c) be a lemniscate component having a tangent vector dz
at its point z. The gradient of the real valued function log |f(z)| at

7z can be calculated as follows:

grad(log |f(2)]) = 2% log |f(2)[ = (7:((22))> .

Hence, the tangent vector dz to L%(c) at z is given by

9= (’;(()))




Lemniscates and quadratic differentials.

Multiplying both sides of previous equation by #’:((zz)) and then
squaring, we obtain

1 (f(2)\

- (Z) de _ L
472 \ f(z) 472

The left hand-side defines a quadratic differential, which will be

denoted by Qf(z) dz?: e,

Qr(2) d2 = —— (f/(z))deZ

4n2

f'(z)|?

f(2)

Now this equation shows that
Q¢(z) dz* > 0.

if dz is a tangent vector to the lemniscate of f(z) passing through
Z.



Special Structure of Trajectories.

Since the quadratic differential Q¢(z) dz? is generated by the
logarithmic derivative its trajectory structure is not of a general
form.

In particular, that trajectory structure of Q¢(z) dz? does not
include end domains and strip domains having poles on their
boundaries in D. Also, the trajectory structure of Qf(z) dz? does
not include density domains since otherwise some level set of f(z)
would be dense in such a domain. Then, |f(z)| must be constant
on a density domain and therefore f(z) must be constant on D
contradicting our assumption.




(a) Cartesian polygonal curves. By a Cartesian polygonal curve
we understand a Jordan curve consisting of a finite number of
horizontal and vertical segments. Any such curve I is a boundary
of a standard polygon €2_ having an even number of sides and
even number of vertices, vi,..., v»,. We suppose here that
vertices are always oriented in the counterclockwise direction and
that Vopt+1l = Vi, Vo = Von.

The horizontal and vertical sides of £2_ are arcs of trajectories and,
respectively, arcs of orthogonal trajectories of the quadratic
differential Q(¢) d(? =1-d(2. Transplanting this quadratic
differential via the mapping ¢p_ : D — Q_, we obtain the following
quadratic differential:

Q_(z)dz? = C_eM- H ef )N g2 zeD, (4)

with some C_ >0, v_ € R, and with e’ = 7_(v), where
0< B <fBy <--< By, <B; +2m.



Vi

— |

Figure: Cartesian polygonal curve and critical trajectories of Q_(z) dz>.



(b) Polar polygonal curves. We start with the quadratic
differential 2

Q) dc® =~
Then the radial segments of the form {¢ = re®: n < r < n}
with some aa € R and 0 < 1 < rn < 00 are closed arcs on the
orthogonal trajectories of Q(¢) d¢? and the closed arcs of circles
centered at ( = 0 are closed arcs on the trajectories of Q(¢) d¢?.
By a polar polygonal curve I' we mean a closed Jordan curve
bounded by a finite number of radial segments and circular arcs as
above.
Transplanting Q(¢) d¢? via the mapping o : D — Q_ and
assuming that ¢(0) = 0, we obtain the following quadratic
differential:

(5)

2n
Q_(2)dz? = -C_e"-2z72 H(z — /P )2ew1) 472, zeD,

k=1
o (6)
where e = 1_(v) with 0 < By < By << By, < Py 2.



Figure: Polar polygonal curve and critical trajectories of Q_(z) dz>.



Equation
fﬁk 2n ( 0 eiﬁf>1*af =0 4o
a1
AT

gives necessary and sufficient conditions which guarantee that the
Schwarz-Christoffel integrals representing functions ¢_ and ¢
define one-to-one mappings from D and D onto polygons £2_ and
Q. , respectively. Experts know that a similar fact holds true for
the Schwarz-Christoffel mappings from D and D onto any two
complementary polygons with common Jordan boundary.
Surprisingly, this author was not able to find the latter fact in
standard textbooks on Complex Analysis. Thus, we state it here.

i
= Ce'7,

k— 1



Theorem

Forn>3,let0< 3] <pBy <---<p, <By +2m and let
0<ax<2 k=1,2,...,n, besuchthatd ] jox=n—2.
Then the Schwarz-Christoffel integral

F(z) = /0 ’ [[¢r =P )tdr

k=1

maps D conformally and one-to-one onto some polygon if and only
if there are points z,j — e8¢ with

0< By <Bf < <BF < B+ 2n such that the equation
mentioned above with some C > 0 and v € R are satisfied for all
k=1,2,...,n.
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