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How Complex Analysis can be used to recognize planar shapes?

Fact I: Every simply connected domain D 6= C can be mapped
conformally onto the unit disk D = {|z | < 1}.
Fact II: If D is Jordan then the Riemann mapping function is
continuous up to the boundary.
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The Riemann mapping function f is continuous on the boundary.



Then function g is also continuous on the boundary.









Let Γ be a Jordan curve in the complex plane C and let Ω− and
Ω+ denote the bounded and unbounded components of C \ Γ,
where C is the complex sphere. Then Ω− and Ω+ are simply
connected domains and therefore, by the Riemann mapping
theorem, there exist maps ϕ− : D→ Ω− and ϕ+ : D+ → Ω+,
where D = {z : |z | < 1} is the unit disk and D+ = C \ D.
We suppose that ϕ+ is normalized by conditions ϕ+(∞) =∞,
ϕ′+(∞) > 0, where ϕ′+(∞) = limz→∞ ϕ+(z)/z . The latter
normalization defines ϕ+ uniquely. Each of the maps ϕ− and ϕ+

extends as a continuous one-to-one function onto the unit circle
T = ∂D.



Therefore, the composition k = ϕ−1+ ◦ ϕ− defines an oriented
automorphism of T. Since ϕ− is uniquely determined up to a
precomposition with a Möbius automorphism of D, the
automorphism k is also uniquely determined up to a Möbius
automorphism of D, i.e. up to a precomposition with maps

φ(z) = λ
z − a

1− āz
, |λ| = 1, a ∈ D. (1)

The equivalence class of the automorphism k under the action of
the Möbius group of automorphisms (1) is called the fingerprint of
Γ. Furthermore, the fingerprint k is invariant under translations
and scalings of the curve Γ, i.e. under affine maps L(z) = az + b
with a > 0, b ∈ C. The equivalence class of a Jordan curve Γ
under the action of affine maps of this form is called the shape and
Γ is a representative of this shape. Thus, we have a map F from
the set of all shapes into the set of all orientation preserving
homeomorphisms of T onto itself. Let S1 denote the class of all
smooth shapes in C and let Diff(T) denote the set of all
orientation preserving diffeomorphisms of T.
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Figure: Jordan curve Γ and complementary domains Ω− and Ω+.



The following pioneering result was proved by Alexander A. Kirillov
in “Kähler structure on the K -orbits of a group of diffeomorphisms
of the circle”, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2.

Theorem (Kirillov)

The map F is a bijection between S1 and Diff(T).

In other words, Theorem 1 says that Diff(T) parameterizes the set
S1 of all smooth shapes.

















































Theorem (P. Ebenfelt, D. Khavinson, Harold Shapiro)

Let P(z) = cnz
n + cn−1z

n−1 + . . .+ c0 be a polynomial of degree
n with cn > 0 such that LP(1) is analytic and connected and let
k : T→ T be a fingerprint of LP(1). Then k(z) is given by the
equation

(k(z))n = B(z), (2)

where B(z) is a Blaschke product of degree n,

B(z) = e iα
n∏

k=1

z − ak
1− akz

,

with some real α, where ak = ϕ−1− (ζk) and ζ1, . . . , ζn are the
zeroes of P(z) counting multiplicities.
Conversely, given any Blaschke product of degree n, there is a
polynomial P(z) of the same degree whose lemniscate LP(1) is

analytic and connected and has k(z) = B(z)1/n as its fingerprint.
Moreover, P(z) is unique up to precomposition with an affine map
of the form L(z) = az + b with a > 0 and b ∈ C.



Peter Ebenfelt, Dima Khavinson and Harold Shapiro suggested
that their method can be extended further to study lemniscates of
rational functions.

Their proof of previous theorem is rather involved. A shorter proof
was given by Malik Younsi who also proved a counterpart of
Ebenfelt-Khavinson-Shapiro for the case of rational lemniscates.
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Fingerprints of Rational Lemniscates

Theorem (M. Younsi)

Let R(z) be a rational function of degree n with R(∞) =∞ such
that its lemniscate LR(1) = {z : |R(z)| = 1} is analytic and
connected and let k : T→ T be a fingerprint of LR(1). Then k(z)
is given by a solution to the functional equation

A ◦ k = B, (3)

where A(z) and B(z) are Blaschke products of degree n and
A(∞) =∞.
Conversely, given any solution k(z) to a functional equation
A ◦ k = B, where A(z) and B(z) are Blaschke products of degree n
and A(∞) =∞, there exist a rational function R(z) of degree n
with R(∞) =∞ whose lemniscate LR(1) is analytic and connected
and has k(z) as its fingerprint.























Figure: Γ consisting of two spirals with different α.



Figure: Γ consisting of three critical trajectories.



Figure: Γ consisting of one regular trajectory.
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Figure: Trajectory structure in the case (b).





















(a) Cartesian polygonal curves. By a Cartesian polygonal curve
we understand a Jordan curve consisting of a finite number of
horizontal and vertical segments. Any such curve Γ is a boundary
of a standard polygon Ω− having an even number of sides and
even number of vertices, v1, . . . , v2n. We suppose here that
vertices are always oriented in the counterclockwise direction and
that v2n+1 = v1, v0 = v2n.
The horizontal and vertical sides of Ω− are arcs of trajectories and,
respectively, arcs of orthogonal trajectories of the quadratic
differential Q(ζ) dζ2 = 1 · dζ2. Transplanting this quadratic
differential via the mapping ϕ− : D→ Ω−, we obtain the following
quadratic differential:

Q−(z) dz2 = C−e
iγ−

2n∏
k=1

(z − e iβ
−
k )2(αk−1) dz2, z ∈ D, (4)

with some C− > 0, γ− ∈ R, and with e iβ
−
k = τ−(vk), where

0 ≤ β−1 < β−2 < · · · < β−2n < β−1 + 2π.
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Figure: Cartesian polygonal curve and critical trajectories of Q−(z) dz2.



(b) Polar polygonal curves. We start with the quadratic
differential

Q(ζ) dζ2 = −dζ2

ζ2
. (5)

Then the radial segments of the form {ζ = re iα : r1 ≤ r ≤ r2}
with some α ∈ R and 0 < r1 < r2 <∞ are closed arcs on the
orthogonal trajectories of Q(ζ) dζ2 and the closed arcs of circles
centered at ζ = 0 are closed arcs on the trajectories of Q(ζ) dζ2.
By a polar polygonal curve Γ we mean a closed Jordan curve
bounded by a finite number of radial segments and circular arcs as
above.
Transplanting Q(ζ) dζ2 via the mapping ϕ− : D→ Ω− and
assuming that ϕ(0) = 0, we obtain the following quadratic
differential:

Q−(z) dz2 = −C−e iγ−z−2
2n∏
k=1

(z − e iβ
−
k )2(αk−1) dz2, z ∈ D,

(6)

where e iβ
−
k = τ−(vk) with 0 ≤ β−1 < β−2 < · · · < β−2n < β−1 + 2π.
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Figure: Polar polygonal curve and critical trajectories of Q−(z) dz2.



Equation ∫ β+
k

β+
k−1

∏2n
j=1

(
e iθ − e iβ

+
j

)1−αj

e−iθ dθ∫ β−
k

β−
k−1

∏2n
j=1

(
e iθ − e iβ

−
j

)αj−1
e iθ dθ

= Ce iγ ,

gives necessary and sufficient conditions which guarantee that the
Schwarz-Christoffel integrals representing functions ϕ− and ϕ+

define one-to-one mappings from D and D+ onto polygons Ω− and
Ω+, respectively. Experts know that a similar fact holds true for
the Schwarz-Christoffel mappings from D and D+ onto any two
complementary polygons with common Jordan boundary.
Surprisingly, this author was not able to find the latter fact in
standard textbooks on Complex Analysis. Thus, we state it here.



Theorem
For n ≥ 3, let 0 ≤ β−1 < β−1 < · · · < β−n < β−1 + 2π and let
0 < αk < 2, k = 1, 2, . . . , n, be such that

∑n
k=1 αk = n − 2.

Then the Schwarz-Christoffel integral

F (z) =

∫ z

0

n∏
k=1

(τ − e iβ
−
k )αk−1 dτ

maps D conformally and one-to-one onto some polygon if and only
if there are points z+k = e iβ

+
k with

0 ≤ β+1 < β+1 < · · · < β+n < β+1 + 2π such that the equation
mentioned above with some C > 0 and γ ∈ R are satisfied for all
k = 1, 2, . . . , n.
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