Quasiconformal variation of cross-ratios and applications

Mitsuhiro Shishikura (Kyoto University)

New Developments in Complex Analysis and Function Theory University of Crete, Heraklion, July 3, 2018

Variation of torus and cross-ratio under qc-mapping

 $\mathbb{H} \ni \tau = \text{modulus of torus} \xrightarrow{\text{elliptic modular function } \lambda(\tau)} \text{cross-ratio} \in \mathbb{C} \smallsetminus \{0, 1\}$

1. Integral estimate on $\left|\log \frac{f(z_1)}{z_1} - \log \frac{f(z_2)}{z_2}\right| = \left|\log \frac{f(z_1)}{f(z_2)} - \log \frac{z_1}{z_2}\right|$ $\frac{z_1}{z_2} = \frac{z_1 - 0}{z_2 - 0} \cdot \frac{z_2 - \infty}{z_1 - \infty}$

- Conformality at a pt: Teichmüller-Wittich-Belinskii's theorem
- $C^{1+\alpha}$ -conformality: $f(z) = f(0) + f'(0)z + O(|z|^{1+\alpha})$
- Construction an entire function of class \mathcal{B} with finite order having a wandering domain. D. Martí Pete's talk.
- 2. Differentiability of qc-mappings w.r.t. a parameter (Ahlfors-Bers)
 - More precise estimate on the variation of torus
 - An integral-differential equation for elliptic modular function $\lambda(\tau)$

Quasiconformal mappings

Definition: A mapping $f: \Omega \to \Omega'$ between open sets Ω, Ω' in \mathbb{C} is called *quasiconformal* if

- (i) f is an orientation-preserving homeomorphism;
- (ii) f_x, f_y (in the sense of distribution) $\in L^1_{loc}(\mathbb{C})$; (iii) Denote $\mu_f(z) = \frac{f_{\overline{z}}(z)}{f_z(z)}$ and $D_f(z) = \frac{1 + |\mu_f(z)|}{1 - |\mu_f(z)|}$, then $||\mu_f||_{\infty} < 1$ (or equivalently $K(f) = \mathrm{ess} \sup D_f(z) < \infty$).
- Qc-mappings are almost everywhere differentiable but not everywhere.
- Quasi-invariance of conformal invariants– moduli of annuli, quadrilaterals.
- Measurable Riemann Mapping Theorem: Given $\mu \in L^{\infty}(\mathbb{C})$, $\exists f_{\mu} : \mathbb{C} \to \mathbb{C}$ quasiconformal with $\mu_{f_{\mu}} = \mu$ a.e. (unique with f(0) = 0, f(1) = 1)
- If $\mu = \mu_s \in L^{\infty}(\mathbb{C})$ is differentiable in s in L^{∞} sense, then $f_{\mu_s}(z)$ is differentiable with respect to s.

Key Inequality. Fix $K \geq 1$. There exist $0 < \delta_1 < 1$ and C > 0 such that if $f : \mathbb{C} \to \mathbb{C}$ K-quasiconfromal, f(0) = 0 and $0 < |z_2| \le \delta_1 |z_1|$,

then

$$\left| \log \frac{f(z_1)}{z_1} - \log \frac{f(z_2)}{z_2} \right|_{\mathbb{C}/2\pi i\mathbb{Z}} \le CJ(\mu_f; z_1, z_2),$$

where
$$\varphi_{z_1, z_2}(z) = \frac{z_1}{z(z-z_1)(z-z_2)}$$
 and
 $J(\mu, z_1, z_2) = 2 \left| \iint_{\mathbb{C}} \frac{\mu}{1-|\mu|^2} \varphi_{z_1, z_2}(z) dx dy \right| + 2 \iint_{\mathbb{C}} \frac{|\mu|^2}{1-|\mu|^2} |\varphi_{z_1, z_2}(z)| dx dy.$
If $|z_2| \ll |z| \ll |z_1|$, then $\varphi_{z_1, z_2}(z) \sim -\frac{1}{z^2}$ (with integral estimates).

Theorem (Teichmüller, Wittich, Belinskiĭ) Let $f : \mathbb{C} \to \mathbb{C}$ quasiconformal mapping, and assume that

$$\iint_{0 < |z| < 1} \frac{|\mu_f(z)| dx \, dy}{|z|^2} < \infty, \tag{1} \begin{array}{c} \text{classical proofs} \\ \text{radial and angular} \\ \text{differentiability} \end{array}$$

Then f is conformal at z = 0, i.e. $\exists \lim_{z \to 0} \frac{f(z) - f(z)}{z - 0} =: f'(0) \neq 0.$

separately

Theorem (Gutlyanskiĭ-Martio) Same conclusion under weaker conditions:

$$\iint_{|z|<1} \frac{|\mu_f(z)|^2}{1-|\mu_f(z)|^2} \frac{dx\,dy}{|z|^2} < \infty \text{ and } \lim_{r \searrow 0} \iint_{r<|z|<1} \frac{\mu_f(z)}{1-|\mu_f(z)|^2} \frac{dx\,dy}{z^2} \text{ exists.}$$

The Grötzsch inequality (where it all starts)

$$E_{\tau} = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau) \qquad E_{\tau^*} = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau^*)$$

$$\int_{1}^{\tau} \int_{1}^{\tau} \int_{$$

Lemma. Let $\tau_1, \tau_2 \in \mathbb{H}$. If there exists $L \geq 1$ such that

for any
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}), \quad \text{Im } A(\tau_1) \leq L \text{ Im } A(\tau_2),$$

then $d_{\mathbb{H}}(\tau_1, \tau_2) \leq \log L.$

By
$$\operatorname{Im} \tau \leq \operatorname{Im} \tau^* \frac{\iint_{E_{\tau}} \frac{|1+\mu|^2}{1-|\mu|^2} dx dy}{\operatorname{Im} \tau}$$

and the change of basis of $\mathbb{Z} + \mathbb{Z}\tau$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$, which has an effect $\tau \mapsto \frac{a\tau+b}{c\tau+d}$ and $\mu \rightsquigarrow e^{i\theta}\mu$,

Torus version of Grötzsch-type ineq.

$$d_{\mathbb{H}}(\tau,\tau^*) \leq \log \overline{K}_f := \log \frac{\sup_{\theta \in \mathbb{R}} \iint_{E_{\tau}} \frac{|1+e^{i\theta}\mu_f(z)|^2}{1-|\mu_f(z)|^2} dx \, dy}{\operatorname{Im} \tau}$$
$$= \log \left(1+2|I_1|+2I_2\right),$$

where
$$I_1 = \frac{1}{\operatorname{Im} \tau} \iint_{E_{\tau}} \frac{\mu(z) dx dy}{1 - |\mu(z)|^2}$$
 and $I_2 = \frac{1}{\operatorname{Im} \tau} \iint_{E_{\tau}} \frac{|\mu(z)|^2 dx dy}{1 - |\mu(z)|^2}$.

From torus to cross-ratio

Grötzsch-type ineq for cross-ratio (Teichmüller)

 $\begin{aligned} d_{\mathbb{C}\smallsetminus\{0,1\}}(\zeta,\zeta^*) &= d_{\mathbb{H}}(\tau,\tau^*) \leq \log(1+2|I_1|+2I_2) \leq 2|I_1|+2I_2 = \frac{J(\mu,1,\zeta)}{J_*(1,\zeta)} \\ & \text{where} \\ & \int \int_{\mathbb{C}} \frac{\mu}{1-|\mu|^2} \varphi_{z_1,z_2}(z) dx dy \Big| + 2 \iint_{\mathbb{C}} \frac{|\mu|^2}{1-|\mu|^2} |\varphi_{z_1,z_2}(z)| dx dy, \\ & J_*(z_1,z_2) = \iint_{\mathbb{C}} |\varphi_{z_1,z_2}(z)| dx dy \text{ with } \varphi_{z_1,z_2}(z) = \frac{z_1}{z(z-z_1)(z-z_2)}. \end{aligned}$

Proof of Key inequality

Lemma. For $L = \log K$, $0 < \exists \delta_1 < 1$, $\exists C_0 > 0$ such that if $d_{\mathbb{C} \setminus \{0,1\}}(\zeta_1, \zeta_2) \leq L$ and $0 < |\zeta_1| < \delta_1$, then

$$|\log \zeta_1 - \log \zeta_2|_{\mathbb{C}/2\pi i\mathbb{Z}} \le C_0 d_{\mathbb{C}\setminus\{0,1\}}(\zeta_1,\zeta_2) \log \frac{1}{|\zeta_1|}.$$

Idea of pf.
$$ds \sim \frac{|dz|}{|z|\log \frac{1}{|z|}}$$
 near 0, hence $\frac{1}{C_1}\log \frac{1}{|\zeta_1|} \leq \log \frac{1}{|\zeta_2|} \leq C_1\log \frac{1}{|\zeta_1|}$.
 $|\log \zeta_1 - \log \zeta_2|_{\mathbb{C}/2\pi i\mathbb{Z}} \leq \int_{\zeta_1}^{\zeta_2} \left|\frac{dz}{z}\right| \leq C_0\int_{\zeta_1}^{\zeta_2} ds \log \frac{1}{|\zeta_1|} = C_0 d_{\mathbb{C}\setminus\{0,1\}}(\zeta_1,\zeta_2)\log \frac{1}{|\zeta_1|}$.

Suppose
$$f : \mathbb{C} \to \mathbb{C}$$
 K-quasiconfromal, $f(0) = 0$ and $0 < |z_2| \le \delta_1 |z_1|$.
Set $\zeta_1 = \frac{z_2}{z_1}$ and $\zeta_2 = \frac{f(z_2)}{f(z_1)}$. Then

$$\begin{aligned} \left| \log \frac{f(z_1)}{z_1} - \log \frac{f(z_2)}{z_2} \right|_{\mathbb{C}/2\pi i\mathbb{Z}} &= \left| \log \zeta_1 - \log \zeta_2 \right|_{\mathbb{C}/2\pi i\mathbb{Z}} \le C_0 \, d_{\mathbb{C}\smallsetminus\{0,1\}}(\zeta_1,\zeta_2) \log \frac{1}{|\zeta_1|} \\ &\le C_0 \frac{J(\mu, z_1, z_2)}{J_*(z_1, z_2)} \log \frac{1}{|\zeta_1|} \le CJ(\mu, z_1, z_2) \end{aligned}$$

Here
$$J_*(z_1, z_2) \ge C_2 \log \frac{|z_1|}{|z_2|}$$
, since $\varphi_{z_1, z_2}(z) \sim -\frac{1}{z^2}$ for $|z_2| \ll |z| \ll |z_1|$.

$$(J(\mu, z_1, z_2) = 2 \left| \iint_{\mathbb{C}} \frac{\mu}{1 - |\mu|^2} \varphi_{z_1, z_2}(z) dx dy \right| + 2 \iint_{\mathbb{C}} \frac{|\mu|^2}{1 - |\mu|^2} |\varphi_{z_1, z_2}(z)| dx dy, \quad \varphi_{z_1, z_2}(z) = \frac{z_1}{z(z - z_1)(z - z_2)} \cdot \right)$$

Other applications of Key inequality

Theorem Let $f : \mathbb{C} \to \mathbb{C}$ be a quasiconformal mapping and suppose that for some $\beta > 0$,

$$I(r) = \iint_{\{z:|z| < r\}} \frac{|\mu(z)|}{1 - |\mu(z)|^2} \frac{dx \, dy}{|z|^2} \text{ is finite and has order } O(r^\beta) \, (r \searrow 0).$$

Then for any $0 < \alpha < \frac{\beta}{2+\beta}$, f is $C^{1+\alpha}$ -conformal at 0, i.e.

$$f(z) = f(0) + f'(0)z + \varepsilon_f(z)$$
 with $\varepsilon_f(z) = O(|z|^{1+\alpha})$ as $z \to 0$.

cf. Schatz, McMullen

Theorem (with D. Marti Pete) There exists a transcendental entire function of finite order with bounded singular values such that it has an oscillating wandering domain.

cf. Bishop's construction using qc-folding

Estimate on $\log \frac{\phi(z)}{z}$ for a qc ϕ whose μ_{ϕ} has support in disks B_m 's such that $\operatorname{radius}(B_m) \ll d(0, B_m)$ and B_m 's are far aprt from each other.

Differentiability with respect to a parameter **Theorem.** (Ahlfors-Bers) Suppose $\mu_t, \nu \in L^{\infty}(\mathbb{C})$ $(t \in [0, t_0]), \mu_0 \equiv 0$,

$$||\mu_t(z) - t\nu(z)||_{\infty} = o(t) \quad (t \to 0) \quad \text{(differentiable in } L^{\infty} \text{ sense}).$$

Let $f_t : \mathbb{C} \to \mathbb{C}$ be the quasiconformal mapping satisfying $\mu_{f_t} = \mu_t(z)$ a.e. and $f_t(0) = 0$, $f_t(1) = 1$. Then for $\zeta \in \mathbb{C} \setminus \{0, 1\}$, $f_t(\zeta)$ is differentiable with respect to t at t = 0 and the derivative is given by

$$\left. \frac{\partial f_t(\zeta)}{\partial t} \right|_{t=0} = -\frac{\zeta(\zeta-1)}{\pi} \iint_{\mathbb{C}} \frac{\nu(z) dx dy}{z(z-1)(z-\zeta)}$$

The classical proof relies on heavy machinery of the measurable Riemann mapping theorem using singular integral operators and Calderón-Zygmund ineq.

We derive the parametric differentiability with a weaker assumption via the variation of cross-ratios.

Theorem. Suppose $||\mu_t||_{\infty} = o(\sqrt{t})$ and $\iint_{\mathbb{C}} \frac{\mu_t(z)dxdy}{z(z-1)(z-\zeta)} = t\tilde{J}_0 + o(t)$ $(t \to 0)$. Then $f_t(\zeta)$ is differentiable with respect to t at t = 0 and the derivative is given by $\frac{\partial f_t(\zeta)}{\partial t}\Big|_{t=0} = -\frac{\zeta(\zeta-1)}{\pi}\tilde{J}_0.$

back to torus

Theorem. Suppose $f: E_{\tau} \to E_{\tau^*}$ quasiconformal, $\mu = \mu_f$. Define

$$I_1 = \frac{1}{\mathrm{Im}\,\tau} \iint_{E_\tau} \frac{\mu(z)}{1 - |\mu(z)|^2} dx dy, \quad I_2 = \frac{1}{\mathrm{Im}\,\tau} \iint_{E_\tau} \frac{|\mu(z)|^2}{1 - |\mu(z)|^2} dx dy,$$

$$\hat{\tau} = \operatorname{Re}\tau + \operatorname{Im}\tau \frac{2\operatorname{Im}I_1 + i\sqrt{(1+2I_2)^2 - 4|I_1|^2}}{1+2\operatorname{Re}I_1 + 2I_2}, \quad \hat{K} = \sqrt{(1+2I_2)^2 - 4|I_1|^2},$$

$$I = \frac{1}{1+2\operatorname{Re}I_1 + 2I_2}$$

$$\check{\tau} = \tau + 2i \operatorname{Im} \tau \, \frac{-I_1 + I_2^2 - |I_1|^2}{1 + 2\operatorname{Re} I_1 + 2I_2}, \quad \check{R} = 2\operatorname{Im} \tau \, \frac{I_2 + I_2^2 - |I_1|^2}{1 + 2\operatorname{Re} I_1 + 2I_2}.$$

Then
$$d_{\mathbb{H}}(\tau^*, \hat{\tau}) \leq \log \hat{K}$$
 and $|\tau^* - \check{\tau}| \leq \check{R}$.

Corollary. Suppose $f_s : E_{\tau} \to E_{\tau^*(s)}$ is a family of qc-mappings $(s \in [0, s_0])$. Let $I_1(s), I_2(s)$ be corresponding integrals of $\mu_s = \mu_{f_s}$. If $I_1(s) = s\tilde{I}_1 + o(s), I_2(s) = o(s) \ (s \to 0)$, then

$$\left. \frac{d\tau^*(s)}{ds} \right|_{s=0} = -2i\tilde{I}_1 \operatorname{Im} \tau.$$

variation of cross-ratio

Suppose
$$f_s : \mathbb{C} \to \mathbb{C}$$
 is a family of qc-mappings,
with $f_s(0) = 0, f_s(1) = 1, \mu_s = \mu_{f_s} \ (s \in [0, s_0]).$
Let $\tilde{f}_s : E_\tau \to E_{\tau^*(s)}$ be a lift, $\tilde{\mu}_s = \mu_{\tilde{f}_s}.$
Fix $\zeta \in \mathbb{C} \setminus \{0, 1\}.$ Then $f_s(\zeta) = \lambda(\tau^*(s)).$
Define $J_1(s) = \iint_{\mathbb{C}} \frac{\mu_s(z)}{1 - |\mu_s(z)|^2} \frac{dxdy}{c_\tau z(z-1)(z-\zeta)},$
 $J_2(s) = \iint_{\mathbb{C}} \frac{|\mu_s(z)|^2}{1 - |\mu_s(z)|^2} \frac{dxdy}{|c_\tau z(z-1)(z-\zeta)|},$
 $J_* = \iint_{\mathbb{C}} \frac{dxdy}{|c_\tau z(z-1)(z-\zeta)|} = \frac{\mathrm{Im}\,\tau}{2}.$
Then $I_1(s) = J_1(s)/J_*, I_2(s) = J_2(s)/J_*.$

By Corollary, if $J_1(s) = s\tilde{J}_1 + o(s), J_2(s) = o(s) \ (s \to 0),$

$$\frac{\partial f_s(\zeta)}{\partial s}\Big|_{s=0} = \lambda'(\tau)\frac{d\tau^*}{ds}(0) = \lambda'(\tau)(-2i\tilde{J}_1\frac{2}{\operatorname{Im}\tau})\operatorname{Im}\tau = -4i\lambda'(\tau)\tilde{J}_1.$$

This is the case if $||\mu_s||_{\infty} = o(\sqrt{s})$ and $\iint \frac{\mu_s(z)dxdy}{z(z-1)(z-\zeta)} = s\tilde{J}_0 + o(s)$, therefore $\frac{\partial f_s(\zeta)}{\partial s}\Big|_{s=0} = -4i\frac{\lambda'(\tau)}{c_{\tau}}\tilde{J}_0$. In order to determine the coefficient, we only need to consider one example. Let $f_s(z) = z + sh(z)$, where h(z) is smooth and supported on a small disk around ζ and $h(\zeta) = 1$. Then $f_s(\zeta) = \zeta + s$ and $\mu_s(z) = s h_{\overline{z}}(z) + O(s^2)$, hence by the previous formula and Pompeiu formula,

$$1 = \frac{\partial f_s(\zeta)}{\partial s} = -4i \frac{\lambda'(\tau)}{c_\tau} \iint_{\mathbb{C}} \frac{h_{\overline{z}}(z) dx dy}{z(z-1)(z-\zeta)} = 4i \frac{\lambda'(\tau)}{c_\tau} \frac{\pi}{\zeta(\zeta-1)}.$$

Hence we obtain the formula $\left. \frac{\partial f_t(\zeta)}{\partial t} \right|_{t=0} = -\frac{\zeta(\zeta-1)}{\pi} \tilde{J}_0.$

As a byproduct, we obtain:

Integral-differential equation for elliptic modular function $\lambda(\tau)$

$$\lambda'(\tau) = \frac{1}{\pi i} \lambda(\tau) (\lambda(\tau) - 1) \left(\int_{\infty}^{0} \frac{dz}{\sqrt{z(z-1)(z-\lambda(\tau))}} \right)^{2}.$$
 reference??

Agard's formula for the Poincaré metric $\rho(z)|dz|$ of $\mathbb{C} \smallsetminus \{0,1\}$:

$$\frac{1}{\rho(\zeta)} = \frac{|\zeta(\zeta-1)|}{2\pi} \iint_{\mathbb{C}} \frac{dxdy}{|z(z-1)(z-\zeta)|}.$$

Outline of Proof of Main Estimate

Lemma. Let $\tau_1, \tau_2 \in \mathbb{H}$. If there exists $L \geq 1$ such that

for any
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}), \quad \text{Im } A(\tau_1) \leq L \text{ Im } A(\tau_2),$$

then $d_{\mathbb{H}}(\tau_1, \tau_2) \leq \log L.$

Look for
$$\hat{\tau}$$
 and L such that for all c, d
 $\operatorname{Im} A(\hat{\tau}) \leq L \operatorname{Im} A(\tau^*) \iff \frac{|c\tau^* + d|^2}{\operatorname{Im} \tau^*} \leq L \frac{|c\hat{\tau} + d|^2}{\operatorname{Im} \hat{\tau}}.$

On the other hand, Grötzsch inequality after change of basis gives:

$$\begin{split} \frac{|c\tau^* + d|^2}{\mathrm{Im}\,\tau^*} &\leq \left(\frac{|c\tau + d|^2}{\mathrm{Im}\,\tau}\right)^2 \iint_{\mathbb{E}_{\tau}} \frac{|1 + \mu(z)\frac{c\overline{\tau} + d}{c\tau + d}|^2}{1 - |\mu(z)|^2} \frac{dx\,dy}{|c\tau + d|^2} \\ &= \frac{1}{(\mathrm{Im}\,\tau)^2} \iint_{\mathbb{E}_{\tau}} \frac{|(c\tau + d) + (c\overline{\tau} + d)\mu(z)|^2}{1 - |\mu(z)|^2} dx\,dy. \end{split}$$

We only need to find $\hat{\tau}$ and L so that the right hand side of two inequalities coincide, i.e. just match coefficients of c^2 , cd, d^2 . Such $\hat{\tau}$ and L can be expressed in terms of

$$I_1 = \frac{1}{\mathrm{Im}\,\tau} \iint_{E_{\tau}} \frac{\mu(z)}{1 - |\mu(z)|^2} dx dy \text{ and } I_2 = \frac{1}{\mathrm{Im}\,\tau} \iint_{E_{\tau}} \frac{|\mu(z)|^2}{1 - |\mu(z)|^2} dx dy.$$

Example

 $\mu_s(z) = s^{1/2} \lambda_s(z) + s\nu(z)$ $\lambda_s(z)$ fast oscillating, e.g. $\lambda_s(z) = e^{ip(s)x}$ with $p(s) \to \infty$ fast