Approximation of functions and operators. A tentative comparison

H. Queffélec, Univ. of Lille 1 New developments in Complex Analysis and Function Theory Heraklion 2018

Monday, July 02, 2018

Joint work with D. Li, L. Rodríguez-Piazza

Functions	Operators
$\mathcal{K} = [-1,1]$	H, Hilbert space
$f\in L^\infty(K)$ with $\ f\ _K=\cdots$	$T \in \mathcal{L}(H)$ with $\ T\ = \cdots$
\mathcal{P}_n : polynomials of degree $\leq n$	\mathcal{R}_n : operators of rank $< n$.
$E_n(f) = \inf_{P \in \mathcal{P}_n} \ f - P\ _{\mathcal{K}}$	$a_n(T) = \inf_{R \in \mathcal{R}_n} \ T - R\ .$
$f \in \mathcal{C}(K) \Leftrightarrow E_n(f) ightarrow 0$	$T \in \mathcal{K}(H) \Leftrightarrow a_n(T) ightarrow 0$
$E_n(f) = \varepsilon_n \downarrow 0$ arbitrary (Bernstein)	$a_n(T) = \varepsilon_n \downarrow 0$ arbitrary (trivial)
$E_n(f)$ small iff f regular	$a_n(T)$ small : $T \in S_p, p > 0$.
Green capacity of $K \subset \Omega$	Green capacity of $arphi(\mathbb{D})\subset\mathbb{D}$
Bernstein-Widom formula	Li-Q-Rodr. spectral radius formula

2

Functions	Operators
$\mathcal{K} = [-1,1]$	H, Hilbert space
$f\in L^\infty(K)$ with $\ f\ _K=\cdots$	$T \in \mathcal{L}(H)$ with $\ T\ = \cdots$
\mathcal{P}_n : polynomials of degree $\leq n$	\mathcal{R}_n : operators of rank $< n$.
$E_n(f) = \inf_{P \in \mathcal{P}_n} \ f - P\ _{\mathcal{K}}$	$a_n(T) = \inf_{R \in \mathcal{R}_n} \ T - R\ .$
$f \in \mathcal{C}(K) \Leftrightarrow E_n(f) ightarrow 0$	$T \in \mathcal{K}(H) \Leftrightarrow a_n(T) ightarrow 0$
$E_n(f) = \varepsilon_n \downarrow 0$ arbitrary (Bernstein)	$a_n(T) = \varepsilon_n \downarrow 0$ arbitrary (trivial)
$E_n(f)$ small iff f regular	$a_n(T)$ small : $T \in S_p, p > 0$.
Green capacity of $K \subset \Omega$	Green capacity of $arphi(\mathbb{D})\subset\mathbb{D}$
Bernstein-Widom formula	Li-Q-Rodr. spectral radius formula

 \hookrightarrow What in item 6 if $T \in C$? (Hankel, composition)

2

< □ > < □ > < □ > < □ > < □ >

Approximation of functions

Let 0 < r < 1. Set

$$\mathcal{K} = [-1,1] \subset \Omega = \Omega_r = \{z : |z-1| + |z+1| < r+r^{-1}\}.$$

 Ω_r is the interior of an ellipse.

Theorem (S. Bernstein 1912) Let $f \in C(K)$. The following "spectral radius formula" holds true $\limsup_{n \to \infty} [E_n(f)]^{1/n} \le r \iff f$ extends analytically to $\Omega = \Omega_r$. (Analysis versus Geometry)

э

Approximation of functions

Let 0 < r < 1. Set

$$K = [-1, 1] \subset \Omega = \Omega_r = \{z : |z - 1| + |z + 1| < r + r^{-1}\}.$$

 Ω_r is the interior of an ellipse.

Theorem (S. Bernstein 1912) Let $f \in C(K)$. The following "spectral radius formula" holds true $\limsup_{n \to \infty} [E_n(f)]^{1/n} \le r \iff f \text{ extends analytically to } \Omega = \Omega_r.$

(Analysis versus Geometry)

Key facts :

$$P \in \mathcal{P}_n, \ z \notin K \Rightarrow |P(z)| \le ||P||_K |z + \sqrt{z^2 - 1}|^n$$

 $\Omega = K \cup \{z : |z + \sqrt{z^2 - 1}| < r^{-1}\}.$

э

イロト イヨト イヨト

Bernstein, variant

To ease the presentation, we take another model, in which Ω is fixed and K becomes variable. We denote

$$\mathbb{D} = \{|z| < 1\}, \ \mathbb{T} = \{z : |z| = 1\} \text{ and } K_r = r\mathbb{T}.$$

One has $(K, \Omega_r) = (J(K_r), J(\mathbb{D}))$, where $J(w) = \frac{r^{-1}w + rw^{-1}}{2}$ is the Joukovski map. Bernstein's theorem can be rephrased, with $E_n(f) = \inf_{P \in \mathcal{P}_n} ||f - P||_{K_r}$:

Theorem (Bernstein)

Let $f \in \mathcal{C}(K_r)$. Then

 $\limsup_{n\to\infty} [E_n(f)]^{1/n} \le r \iff f \text{ extends analytically to } \mathbb{D}.$

We now need a small detour...

イロト 不得 トイヨト イヨト 二日

Geometric meaning

Indeed, *r* is related to the Green capacity of K_r inside \mathbb{D} .

We define the Green capacity $C_1(K)$ of $K \subset \mathbb{D}$ compact :

$$C_1(K) = \sup_{0 \le u \le 1} \int_K (\Delta u)(z) \frac{dxdy}{2\pi}, \ u \ \text{subharmonic, or}$$

$$\mathcal{C}_1(\mathcal{K}) = \mathcal{C}_1(\partial \mathcal{K}) = \sup\{\mu(\mathcal{K}) : \mathcal{G}_\mu(z) \leq 1 \text{ for all } z \in \mathbb{D}\}$$

where $G_{\mu}(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| d\mu(\zeta)$ is the Green potential of μ .

We also set $\Gamma_1(K) = \exp\left[-1/(C_1(K))\right]$.

э

• • • • • • • • • • •

Geometric meaning

Indeed, *r* is related to the Green capacity of K_r inside \mathbb{D} .

We define the Green capacity $C_1(K)$ of $K \subset \mathbb{D}$ compact :

$$C_1(K) = \sup_{0 \le u \le 1} \int_K (\Delta u)(z) \frac{dxdy}{2\pi}, \ u \ \text{subharmonic, or}$$

$$\mathcal{C}_1(\mathcal{K}) = \mathcal{C}_1(\partial \mathcal{K}) = \sup\{\mu(\mathcal{K}) : \mathcal{G}_\mu(z) \leq 1 \text{ for all } z \in \mathbb{D}\}$$

where $G_{\mu}(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| d\mu(\zeta)$ is the Green potential of μ .

We also set $\Gamma_1(K) = \exp\left[-1/(C_1(K))\right]$.

Example : Let r < 1. Then

$$C_1(r\mathbb{D}) = C_1(r\mathbb{T}) = \frac{1}{\log(1/r)}$$
 and $\Gamma_1(r\mathbb{D}) = r$.

• • • • • • • • • • •

Generalisations

Under this form, Walsh extended Bernstein's result to arbitrary compact sets $K \subset \mathbb{D}$.

```
Theorem (Bernstein-Walsh)

For f \in C(K) and K \subset \mathbb{D} compact :

\limsup_{n \to \infty} [E_n(f)]^{1/n} \leq \Gamma_1(K) \iff f \text{ extends analytically to } \mathbb{D}.
```

And Siciak extended Bernstein-Walsh to dimension *d*.

```
Theorem (Siciak)

For f \in C(K) and K \subset \mathbb{D}^d compact :

\limsup_{n \to \infty} [E_n(f)]^{1/n} \leq \Gamma_d(K) \iff f \text{ extends analytically to } \mathbb{D}^d.
```

Observe that, now, dim $\mathcal{P}_n \approx n^d$.

イロト 不得 トイヨト イヨト 二日

A result of Widom on Operators

We now switch to operators, and use other subspaces than \mathcal{P}_n .

Let $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} , let

$$J = J_{K} : H^{\infty}(\mathbb{D}) \to \mathcal{C}(K), \ Jf = f$$

be the canonical injection, and

$$\delta_n(J) = \inf_{\substack{d \in B_H^{\infty}(\mathbb{D})}} \left[\sup_{f \in B_H^{\infty}(\mathbb{D})} d(Jf, E) \right]$$

where $d(f, E) = \inf_{P \in E} ||f - P||_{\mathcal{K}}$. The number $\delta_n(J)$ is called the *n*-th Kolmogorov number of *J*.

A result of Widom on Operators

We now switch to operators, and use other subspaces than \mathcal{P}_n .

Let $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} , let

$$J = J_K : H^{\infty}(\mathbb{D}) \to \mathcal{C}(K), \ Jf = f$$

be the canonical injection, and

$$\delta_n(J) = \inf_{\substack{d \in B_H^{\infty}(\mathbb{D})}} \left[\sup_{f \in B_H^{\infty}(\mathbb{D})} d(Jf, E) \right]$$

where $d(f, E) = \inf_{P \in E} ||f - P||_{K}$. The number $\delta_n(J)$ is called the *n*-th Kolmogorov number of *J*.

Theorem (Widom)

Let $K \subset \mathbb{D}$ compact with non-empty interior. Then

$$\limsup_{n\to\infty} [\delta_n(J)]^{1/n} = \Gamma_1(K).$$

Approximation of operators

Let $T: H \to H$ be a bounded operator.

We recall that its *n*-th approximation number $a_n(T)$ is

$$a_n = a_n(T) = \inf_{R \in \mathcal{R}_n} ||T - R||.$$

Three issues implying the numbers $a_n(T)$:

• T compact $(T \in \mathcal{K}(H))$, namely $a_n(T) \to 0$?

Approximation of operators

Let $T: H \to H$ be a bounded operator.

We recall that its *n*-th approximation number $a_n(T)$ is

$$a_n = a_n(T) = \inf_{R \in \mathcal{R}_n} \|T - R\|.$$

Three issues implying the numbers $a_n(T)$:

- T compact $(T \in \mathcal{K}(H))$, namely $a_n(T) \to 0$?
- **2** $T \in S_p$, namely $(a_n) \in \ell_p$, p > 0 (Schatten class)?

• • • • • • • • • • • • •

Approximation of operators

Let $T : H \to H$ be a bounded operator.

We recall that its *n*-th approximation number $a_n(T)$ is

$$a_n = a_n(T) = \inf_{R \in \mathcal{R}_n} \|T - R\|.$$

Three issues implying the numbers $a_n(T)$:

- T compact $(T \in \mathcal{K}(H))$, namely $a_n(T) \to 0$?
- **2** $T \in S_p$, namely $(a_n) \in \ell_p$, p > 0 (Schatten class)?
- Solution Rate of decay of a_n . For example, $a_n \approx e^{-\sqrt{n}}$?

 \hookrightarrow We focus on the class of composition operators C_{φ} .

• • • • • • • • • • • • • •

Composition operators

We set $\Omega = \mathbb{D}^d$, $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$. The Hardy space is

$$\mathcal{H}=\mathcal{H}^2(\Omega)=igg\{f(z)=\sum_lpha b_lpha z^lpha;\sum_lpha |b_lpha|^2=:\|f\|^2<\inftyigg\}.$$

The monomials (z^{α}) form an orthonormal basis of *H*.

If now $\varphi: \Omega \to \Omega$ is analytic and $C_{\varphi}(f) = f \circ \varphi$, then $C_{\varphi}: H \to Hol(\Omega)$.

The question is :

• When does C_{φ} map H to itself?

Composition operators

We set $\Omega = \mathbb{D}^d$, $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$. The Hardy space is

$$\mathcal{H}=\mathcal{H}^2(\Omega)=igg\{f(z)=\sum_lpha b_lpha z^lpha;\sum_lpha |b_lpha|^2=:\|f\|^2<\inftyigg\}.$$

The monomials (z^{α}) form an orthonormal basis of *H*.

If now $\varphi: \Omega \to \Omega$ is analytic and $C_{\varphi}(f) = f \circ \varphi$, then $C_{\varphi}: H \to Hol(\Omega)$.

The question is :

- When does C_{φ} map H to itself?
- Ocmpare the operator C_φ and its symbol φ, as one does for Hankel operators.

We set $T = C_{\varphi}$ with φ non-constant. Then :

• T always bounded on H (Littlewood's subordination principle)!

æ

We set $T = C_{\varphi}$ with φ non-constant. Then :

- **1** T always bounded on *H* (Littlewood's subordination principle)!
- I compact characterized (Mc Cluer and Shapiro)

We set $T = C_{\varphi}$ with φ non-constant. Then :

- T always bounded on H (Littlewood's subordination principle)!
- I compact characterized (Mc Cluer and Shapiro)
- *T p*-Schatten characterized (Luecking, Zhu).

The study of the decay rate of $a_n(T)$, $T = C_{\varphi}$ compact, was undertaken in 2012 (Li-Q-Rodríguez-Piazza).

Motivation : perform a study parallel to that of compact Hankel operators H_{φ} , shown to have arbitrary approximation numbers $\varepsilon_n = a_n(H_{\varphi}) \downarrow 0$. (Megretski-Peller-Treil (1995) and Gérard-Grellier (2014)).

We obtained in particular :

• $a_n(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$.

The study of the decay rate of $a_n(T)$, $T = C_{\varphi}$ compact, was undertaken in 2012 (Li-Q-Rodríguez-Piazza).

Motivation : perform a study parallel to that of compact Hankel operators H_{φ} , shown to have arbitrary approximation numbers $\varepsilon_n = a_n(H_{\varphi}) \downarrow 0$. (Megretski-Peller-Treil (1995) and Gérard-Grellier (2014)).

We obtained in particular :

- $a_n(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$.
- 2 $a_n(T)$ can decay arbitrarily slowly (cf.Sarason's question).

The study of the decay rate of $a_n(T)$, $T = C_{\varphi}$ compact, was undertaken in 2012 (Li-Q-Rodríguez-Piazza).

Motivation : perform a study parallel to that of compact Hankel operators H_{φ} , shown to have arbitrary approximation numbers $\varepsilon_n = a_n(H_{\varphi}) \downarrow 0$. (Megretski-Peller-Treil (1995) and Gérard-Grellier (2014)).

We obtained in particular :

- $a_n(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$.
- 2 $a_n(T)$ can decay arbitrarily slowly (cf.Sarason's question).
- $||\varphi||_{\infty} < 1 \Rightarrow a_n(T) \le C\beta^n \text{ with } 0 < \beta < 1.$

The study of the decay rate of $a_n(T)$, $T = C_{\varphi}$ compact, was undertaken in 2012 (Li-Q-Rodríguez-Piazza).

Motivation : perform a study parallel to that of compact Hankel operators H_{φ} , shown to have arbitrary approximation numbers $\varepsilon_n = a_n(H_{\varphi}) \downarrow 0$. (Megretski-Peller-Treil (1995) and Gérard-Grellier (2014)).

We obtained in particular :

- $a_n(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$.
- 2 $a_n(T)$ can decay arbitrarily slowly (cf.Sarason's question).
- $||\varphi||_{\infty} < 1 \Rightarrow a_n(T) \le C\beta^n \text{ with } 0 < \beta < 1.$
- $\|\varphi\|_{\infty} = 1 \Rightarrow a_n(T) \ge \delta e^{-n\varepsilon_n} \text{ with } \varepsilon_n \to 0.$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One of our main results later (2015) was, in case $K = \overline{\varphi(\mathbb{D})} \subset \mathbb{D}$:

$$\beta_1(T) := \lim_{n \to \infty} \left[a_n(T) \right]^{1/n} = \Gamma_1(K).$$

Sketch of proof : $a_n(T) \approx \delta_n(J)$ where $J = J_K$.

э

イロト イヨト イヨト

One of our main results later (2015) was, in case $K = \overline{\varphi(\mathbb{D})} \subset \mathbb{D}$:

$$\beta_1(T) := \lim_{n \to \infty} \left[a_n(T) \right]^{1/n} = \Gamma_1(K).$$

Sketch of proof : $a_n(T) \approx \delta_n(J)$ where $J = J_K$.

This recaptures 4. of the previous slide when $\|\varphi\|_{\infty}=1$ as follows :

•
$$\beta_1(C_{\varphi_r}) \leq \beta_1(C_{\varphi})$$
 if $\varphi_r(z) = \varphi(rz), \ 0 < r < 1.$

イロト イヨト イヨト

One of our main results later (2015) was, in case $K = \overline{\varphi(\mathbb{D})} \subset \mathbb{D}$:

$$\beta_1(T) := \lim_{n \to \infty} \left[a_n(T) \right]^{1/n} = \Gamma_1(K).$$

Sketch of proof : $a_n(T) \approx \delta_n(J)$ where $J = J_K$.

This recaptures 4. of the previous slide when $\|\varphi\|_{\infty} = 1$ as follows :

•
$$\beta_1(C_{\varphi_r}) \leq \beta_1(C_{\varphi})$$
 if $\varphi_r(z) = \varphi(rz), \ 0 < r < 1.$

 $\textbf{ Start}: 0 \in \mathcal{K}_j, \ \textbf{connected, and } \lim_{j \to \infty} |\mathcal{K}_j| = 1 \Longrightarrow \mathcal{C}_1(\mathcal{K}_j) \to \infty.$

3

One of our main results later (2015) was, in case $K = \overline{\varphi(\mathbb{D})} \subset \mathbb{D}$:

$$\beta_1(T) := \lim_{n \to \infty} \left[a_n(T) \right]^{1/n} = \Gamma_1(K).$$

Sketch of proof : $a_n(T) \approx \delta_n(J)$ where $J = J_K$.

This recaptures 4. of the previous slide when $\|\varphi\|_{\infty} = 1$ as follows :

•
$$\beta_1(C_{\varphi_r}) \leq \beta_1(C_{\varphi})$$
 if $\varphi_r(z) = \varphi(rz), \ 0 < r < 1.$
• Fact : $0 \in K_j$, connected, and $\lim_{j \to \infty} |K_j| = 1 \Longrightarrow C_1(K_j) \to \infty$
• Take $K_j = \overline{\varphi(r_j \mathbb{D})}, \ r_j \uparrow 1.$

Test : $\varphi(z) = rz$, $a_n(C_{\varphi}) = r^{n-1}$, $K = r\overline{\mathbb{D}}$, $\beta_1(C_{\varphi}) = r$. We also know that $\Gamma_1(K) = r$ since $C_1(K) = \frac{1}{\log 1/r}$.

Let $\varphi: \mathbb{D}^d \to \mathbb{D}^d$ be analytic and non-degenerate, i.e. $J_{\varphi} \not\equiv 0$, and

$$C_{\varphi}(f) = f \circ \varphi : H \text{ to } Hol(\mathbb{D}^d).$$

Difficulty : C_{φ} is not always bounded on H !

We obtained the following when $T = C_{\varphi}$ is bounded, where this time :

$$\beta_d(T) := \lim_{n \to \infty} \left[a_{n^d}(T) \right]^{1/n},$$

(Remember Siciak!)

• $a_{n^d}(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$, or else $\beta_d(T) \ge \alpha$.

イロン イロン イヨン イヨン

Let $\varphi: \mathbb{D}^d \to \mathbb{D}^d$ be analytic and non-degenerate, i.e. $J_{\varphi} \not\equiv 0$, and

$$C_{\varphi}(f) = f \circ \varphi : H \text{ to } Hol(\mathbb{D}^d).$$

Difficulty : C_{φ} is not always bounded on H !

We obtained the following when $T = C_{\varphi}$ is bounded, where this time :

$$\beta_d(T) := \lim_{n \to \infty} \left[a_{n^d}(T) \right]^{1/n},$$

(Remember Siciak!)

- $a_{n^d}(T) \ge \delta \alpha^n$ with $0 < \alpha < 1$, or else $\beta_d(T) \ge \alpha$.
- 2 $a_{n^d}(T)$ can decay arbitrarily slowly.

Let $\varphi : \mathbb{D}^d \to \mathbb{D}^d$ be analytic and non-degenerate, i.e. $J_{\varphi} \not\equiv 0$, and

$$C_{\varphi}(f) = f \circ \varphi : H \text{ to } Hol(\mathbb{D}^d).$$

Difficulty : C_{φ} is not always bounded on H !

We obtained the following when $T = C_{\varphi}$ is bounded, where this time :

$$\beta_d(T) := \lim_{n \to \infty} \left[a_{n^d}(T) \right]^{1/n},$$

(Remember Siciak!)

•
$$a_{n^d}(T) \ge \delta \alpha^n$$
 with $0 < \alpha < 1$, or else $\beta_d(T) \ge \alpha$.

2 $a_{n^d}(T)$ can decay arbitrarily slowly.

$$\|\varphi\|_{\infty} < 1 \Rightarrow a_{n^d}(T) \le C\beta^n \text{ with } 0 < \beta < 1, \text{ or else } \beta_d(T) \le \beta.$$

э

イロン イロン イヨン イヨン

Let $\varphi : \mathbb{D}^d \to \mathbb{D}^d$ be analytic and non-degenerate, i.e. $J_{\varphi} \not\equiv 0$, and

$$C_{\varphi}(f) = f \circ \varphi : H \text{ to } Hol(\mathbb{D}^d).$$

Difficulty : C_{φ} is not always bounded on H !

We obtained the following when $T = C_{\varphi}$ is bounded, where this time :

$$\beta_d(T) := \lim_{n \to \infty} \left[a_{n^d}(T) \right]^{1/n},$$

(Remember Siciak!)

•
$$a_{n^d}(T) \ge \delta \alpha^n$$
 with $0 < \alpha < 1$, or else $\beta_d(T) \ge \alpha$.

2 $a_{n^d}(T)$ can decay arbitrarily slowly.

$$\|\varphi\|_{\infty} < 1 \Rightarrow a_{n^{d}}(T) \leq C\beta^{n} \text{ with } 0 < \beta < 1, \text{ or else } \beta_{d}(T) \leq \beta.$$

•
$$\|\varphi\|_{\infty} = 1 \Rightarrow a_{n^d}(T) \ge \delta e^{-n\varepsilon_n}$$
 with $\varepsilon_n \to 0$, or else $\beta_d(C_{\varphi}) = 1$, in case φ separates variables.

We will come back to the general case.

A word on pluricapacity

The following was coined by Bedford and Taylor (around 1980).

- Replace subharmonic by plurisubharmonic.
- Replace the laplacian (trace) by the Monge-Ampère operator (determinant).

You get the pluri, or Bedford-Taylor, capacity $C_d(K)$ of $K \subset \Omega = \mathbb{D}^d$. This new parameter verifies (Blocki) :

$$C_d(K_1 imes \cdots imes K_r) = \prod_{j=1}^r C_1(K_j), ext{ where } K_j \subset \mathbb{D}.$$

In particular, it extends the Green capacity to dimension d.

A conjecture of Kolmogorov

The following was conjectured by Kolmogorov, and proved later.

Theorem (Nivoche-Zaharyuta) Let $K \subset \mathbb{D}^d$ be compact, with non-void interior, and "regular". Set $\Gamma_d(K) = \exp\left[-\left(\frac{d!}{C_d(K)}\right)^{1/d}\right]$ and let $J : H^{\infty}(\mathbb{D}^d) \to C(K)$ be the canonical injection. Then $\limsup\left[\delta_{n^d}(J)\right]^{1/n} = \Gamma_d(K).$

We now examine a simple example.

An example

Let $\varphi(z) = (r_1 z_1, \dots, r_d z_d)$ with $0 < r_j < 1$. Set $\rho_j = \log 1/r_j$. So that $K := \overline{\varphi(\mathbb{D}^d)} = \prod_{i=1}^d r_i \overline{\mathbb{D}}$ and, by Blocki and the definition :

$$C_d(K) = rac{1}{
ho_1 \cdots
ho_d},$$
 $\Gamma_d(K) = \exp \Big[- \Big(d!
ho_1 \cdots
ho_d \Big)^{1/d} \Big].$

э

An example

Let $\varphi(z) = (r_1 z_1, \dots, r_d z_d)$ with $0 < r_j < 1$. Set $\rho_j = \log 1/r_j$. So that $K := \overline{\varphi(\mathbb{D}^d)} = \prod_{i=1}^d r_i \overline{\mathbb{D}}$ and, by Blocki and the definition :

$$C_d(K) = \frac{1}{\rho_1 \cdots \rho_d},$$

$$\Gamma_d(K) = \exp\left[-\left(d!\rho_1 \cdots \rho_d\right)^{1/d}\right].$$
we see that $C_d(\pi^{\alpha}) = \pi^{\alpha} \pi^{\alpha}$ if $\alpha = (\alpha - \alpha) \in \mathbb{N}^d$

We now see that $C_{\varphi}(z^{\alpha}) = r^{\alpha}z^{\alpha}$ if $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$.

Hence, the $a_n(C_{\varphi})$ are the decreasing rearrangement of the numbers $r_1^{\alpha_1} \cdots r_d^{\alpha_d}$.

An example, continued

Let

$$N_A = |\{lpha: \sum_{j=1}^d lpha_j
ho_j \leq A\}| ext{ with }
ho_j = \log 1/r_j.$$

Then $N_A = |\{\alpha : r^{\alpha} \ge e^{-A}\}|$ and

$$N_A\sim rac{A^d}{d!
ho_1\cdots
ho_d}$$
 as $A
ightarrow\infty.$

イロン イロン イヨン イヨン

An example, continued

Let

$$N_A = |\{lpha : \sum_{j=1}^d lpha_j
ho_j \leq A\}|$$
 with $ho_j = \log 1/r_j$.

Then $N_A = |\{\alpha : r^{lpha} \ge e^{-A}\}|$ and

$$N_A \sim rac{A^d}{d!
ho_1 \cdots
ho_d}$$
 as $A o \infty$.

If $A = \log 1/a_N$, then $N_A = N$. Take $N = n^d$ and invert to get

$$a_{n^d}(C_{\varphi}) = \exp\left[-n(1+o(1))(d!\rho_1\cdots\rho_d)^{1/d}\right],$$

implying the spectral radius formula, with $K = \overline{\varphi(\mathbb{D}^d)}$, namely :

$$eta_d(\mathcal{C}_{arphi}) := \lim_{n \to \infty} \left(a_{n^d}(\mathcal{C}_{arphi})
ight)^{1/n} = \Gamma_d(\mathcal{K}).$$

э

This seems to mean that the Bedford-Taylor capacity is the right substitute to Green capacity in dimension d > 1 and will prove as useful for the study of composition operators. The truth so far is

• The spectral radius formula essentially holds in several dimensions.

This seems to mean that the Bedford-Taylor capacity is the right substitute to Green capacity in dimension d > 1 and will prove as useful for the study of composition operators. The truth so far is

- The spectral radius formula essentially holds in several dimensions.
- But it is possibly less useful, even though it provides a very simple proof of item 3 in slide thirteen.

This seems to mean that the Bedford-Taylor capacity is the right substitute to Green capacity in dimension d > 1 and will prove as useful for the study of composition operators. The truth so far is

- The spectral radius formula essentially holds in several dimensions.
- But it is possibly less useful, even though it provides a very simple proof of item 3 in slide thirteen.
- Indeed, some results are simply wrong in dimension d > 1!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Our main result (counterexample) states

Theorem

There exists a family of maps $\varphi:\mathbb{D}^2\to\mathbb{D}^2$ such that

- The family contains an injective map.
- **2** The operator $C_{\varphi} : H^2(\mathbb{D}^2) \to H^2(\mathbb{D}^2)$ is compact.
- It holds $\|\varphi\|_{\infty} = 1$ and φ is non-degenerate, so $\beta_2^-(C_{\varphi}) > 0$.
- The approximation numbers satisfy $a_{n^2}(C_{\varphi}) \leq \alpha e^{-\beta n}$, i.e. $\beta_2^+(C_{\varphi}) < 1$.

Our main result (counterexample) states

Theorem

There exists a family of maps $\varphi:\mathbb{D}^2\to\mathbb{D}^2$ such that

- The family contains an injective map.
- **2** The operator $C_{\varphi} : H^2(\mathbb{D}^2) \to H^2(\mathbb{D}^2)$ is compact.
- It holds $\|\varphi\|_{\infty} = 1$ and φ is non-degenerate, so $\beta_2^-(C_{\varphi}) > 0$.
- The approximation numbers satisfy $a_{n^2}(C_{\varphi}) \leq \alpha e^{-\beta n}$, i.e. $\beta_2^+(C_{\varphi}) < 1$.

The proof combines

1 Rudin functions $(\langle h^p, h^q \rangle = 0 \text{ if } p \neq q)$

Our main result (counterexample) states

Theorem

There exists a family of maps $\varphi:\mathbb{D}^2\to\mathbb{D}^2$ such that

- The family contains an injective map.
- **2** The operator $C_{\varphi} : H^2(\mathbb{D}^2) \to H^2(\mathbb{D}^2)$ is compact.
- It holds $\|\varphi\|_{\infty} = 1$ and φ is non-degenerate, so $\beta_2^-(C_{\varphi}) > 0$.
- The approximation numbers satisfy $a_{n^2}(C_{\varphi}) \leq \alpha e^{-\beta n}$, i.e. $\beta_2^+(C_{\varphi}) < 1$.

The proof combines

- **1** Rudin functions $(\langle h^p, h^q \rangle = 0 \text{ if } p \neq q)$
- Weighted composition operators $M_w C_{\varphi}$ and their approximation numbers

Our main result (counterexample) states

Theorem

There exists a family of maps $\varphi:\mathbb{D}^2\to\mathbb{D}^2$ such that

- The family contains an injective map.
- **2** The operator $C_{\varphi} : H^2(\mathbb{D}^2) \to H^2(\mathbb{D}^2)$ is compact.
- It holds $\|\varphi\|_{\infty} = 1$ and φ is non-degenerate, so $\beta_2^-(C_{\varphi}) > 0$.
- The approximation numbers satisfy $a_{n^2}(C_{\varphi}) \leq \alpha e^{-\beta n}$, i.e. $\beta_2^+(C_{\varphi}) < 1$.

The proof combines

- **Q** Rudin functions $(\langle h^p, h^q \rangle = 0 \text{ if } p \neq q)$
- **(a)** Weighted composition operators $M_w C_{\varphi}$ and their approximation numbers
- Solution Hilbertian sums of operators $(T = \bigoplus_{k \ge 0} T_k)$.

Rudin functions

Those are functions $h \in B_{H^{\infty}}$ all of whose powers h^{ρ} are orthogonal in H^2 , e.g. an inner function with h(0) = 0, but there are others (Bishop). Then, we take the triangular symbol

$$\varphi(z_1, z_2) = (\lambda(z_1), \mu(z_1)h(z_2)).$$

First, if $f(z) = \sum_{j,k} c_{j,k} z_1^j z_2^k$, then

$$f(z) = \sum_{k \ge 0} z_2^k f_k(z_1)$$
 where $f_k(z_1) = \sum_j c_{j,k} z_1^j$

and by orthogonality

$$||f||^2 = \sum_{k\geq 0} ||f_k||^2_{H^2(\mathbb{D})}$$

Weighted composition operators

 $M_w =$ multiplication operator $f \mapsto wf : H^2(\mathbb{D}) \to H^2(\mathbb{D}), w \in H^{\infty}$. The $a_n(M_wC_{\varphi})$ were studied independently ([3]). Now,

$$C_{\varphi}f(z) = \sum_{k\geq 0} (h(z_2))^k \left(\mu(z_1)^k \sum_j c_{j,k}\lambda(z_1)^j\right)$$
$$= \sum_{k\geq 0} (h(z_2))^k \left(M_{\mu^k}C_\lambda f_k(z_1)\right)$$

so that, by Rudin orthogonality

$$\|C_{\varphi}f\|^2 \leq \sum_{k\geq 0} \|T_kf_k\|^2$$

where T_k is the weighted composition operator

$$T_k = M_{\mu^k} C_{\lambda}.$$

Hilbertian sums

We can hence assume that

$$T = \bigoplus_{k \ge 0} T_k$$
 where $T_k = M_{\mu^k} C_\lambda$

and have the simple

Lemma

If
$$T = \bigoplus_{k>0} T_k$$
 and $N = n_0 + \cdots + n_r$, then

$$a_N(T) \leq \max\Big(\sum_{k=0}^r a_{n_k}(T_k), \sup_{k>r} ||T_k||\Big).$$

Our choice is

•
$$\lambda = \frac{1+\lambda_{\theta}}{2}$$
 where λ_{θ} is a lens map with $0 < \theta < 1$.
• $\mu = w \circ \lambda$ where $w(z) = \exp\left[-\left(\frac{1+z}{1-z}\right)^{\theta}\right]$. One has $\|\mu\|_{\infty} < 1$.

2

イロン イロン イヨン イヨン

End of proof

We finish with the following simple key! lemma

э

End of proof

We finish with the following simple key ! lemma

Combining the previous lemmas gives the result. As soon as h is injective (e.g. h(z) = z), φ is injective as well.

э

Bibliography

- D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, *Journ. Appr. Theory 164* (4) (2012), 431-459.
- D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators, *J. Funct. Anal.* 268 (2) (2015), 4753–4774.
- G. Lechner, D. Li, H. Queffélec, L. Rodríguez-Piazza, Approximation numbers of weighted composition operators, *J. Funct. Anal.* **274** (7) (2018), 1928-1958.
- D. Li, H. Queffélec, L. Rodríguez-Piazza, Some examples of composition operators and their approximation numbers on the Hardy space of the bi-disk, *Submitted*.
- D. Li, H. Queffélec, L. Rodríguez-Piazza, Pluricapacity and approximation numbers of composition operators, *Submitted*.

THANKS FOR YOUR ATTENTION!

2

イロン イロン イヨン イヨン