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Original A. A. Markov inequality (1889):
Let P be a real polynomial, deg(P) = n. Then

‖P ′‖I ≤ n2‖P‖I

where ‖.‖I is the sup norm over I = [−1, 1].

Later, Turán asked about reverse type inequality, under certain
natural assumptions.
Let P be a real polynomial, deg(P) = n. Assume that all the zeros
of P belong to I . Then

‖P ′‖I ≥
√
n

6
‖P‖I .

(Turán, 1939)
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On the unit disk D = {|z | < 1} the corresponding inequalities are:

(Bernstein/M. Riesz, 1914) Let P be a complex polynomial,
deg(P) = n. Then

‖P ′‖D ≤ n‖P‖D
where ‖.‖D is the sup norm over the closed unit disk.

(Turán, 1939) Let P be a complex polynomial, deg(P) = n.
Assume that all zeros of P belong to the closed unit disk. Then

‖P ′‖D ≥
n

2
‖P‖D.

Actually, a bit stronger assertion was proved: if |z | = 1 is such that
|P(z)| = ‖P‖D, then

|P ′(z)| ≥ n

2
‖P‖D.
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Turán’s inequality on D was soon generalized to ellipses by Erőd
(1939). Let 0 ≤ a ≤ 1, E := {x + iy : x2 + y2/a2 ≤ 1}. Assume
that P is a complex polynomial with all zeros in E , deg(P) = n.
Then, for any z ∈ ∂E ,

|P ′(z)| ≥ n

2

a√
1 + a2 − |z |2

|P(z)|.

Note that a/
√

1 + a2 − |z |2 ≥ a, hence

‖P ′‖E ≥
n

2
a‖P‖E .
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For general sets, a Turán type inequality was established by
Levenberg and Poletsky (2002): Let K ⊂ C be a convex compact
set. Denote the diameter of K by diam(K ). Assume that P is a
complex polynomial with all zeros in K , deg(P) = n. Then

‖P ′‖K ≥
1

20

1

diam(K )

√
n‖P‖K .

Later, Révész (2006) established a Turán type inequality for the
same class of sets: Additionally, denote the width of K by w(K ).
Then

‖P ′‖K ≥ 0.0003
w(k)

diam(K )2
n‖P‖K .
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Asymptotically sharp Bernstein type inequality was established for
a general class of sets (N-Totik, 2006): Let K ⊂ C be a compact
set such that ∂K consists of finitely many disjoint C 2 smooth
Jordan curves (each lying exterior of the others). Then for any
z ∈ ∂K and polynomial P, deg(P) = n, we have

|P ′(z)| ≤ (1 + o(1))n
∂

∂n(z)
gK (z)‖P‖K

where ∂/∂n(z)gK (z) is the normal derivative of Green’s function
of K , gK (z) = gC∞\K (z ,∞) and o(1) denotes an error term that
depends on n,K and z and is independent of P and tends to 0 as
n→∞.

This is sharp: o(1) cannot be removed and ∂
∂n(z) cannot be

replaced with smaller const.  potential theory
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Our work in progress: Let K ⊂ C be a compact set such that ∂K
is an analytic Jordan curve. Denote Green’s function of K by
gK (z) = gC∞\K (z ,∞). Assume that P is a complex polynomial
with all zeros in K , deg(P) = n. Let z0 ∈ ∂K be such that
|P(z0)| = ‖P‖K . Conjecture:

|P ′(z0)| ≥ (1− o(1))
∂

∂n(z0)
gK (z0)

n

2
‖P‖K

where o(1) depends on n, K and z0 but it is independent of P and
tends to 0 as n→∞.
Once it is verified, we immediately have a stronger (error-term
free) version:

‖P ′‖K ≥ ω0
n

2
‖P‖K

where ω0 = min{∂/∂n(z)gK (z) : z ∈ ∂K}.
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Some tools used/related: zero free approximation (e.g. Gauthier,
Danielyan, Khruschev), approximation of holomorphic functions
with simple partial fractions

∑
k 1/(z − zk) (e.g. Dolzhenko,

Danchenko)
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A (open?) question arised during research: Let γ be a C 2 smooth
Jordan curve. Let z1, . . . , zn be different points, zk ∈ Intγ, and let
wk,j ∈ C, k = 1, . . . , n, j = 0, 1, . . . ,mk be given with wk,0 6= 0
(for all k = 1, . . . , n; as data for Hermite interpolation). Does
there exist a polynomial P(z) = c(z − z1) . . . (z − zN) such that
z1, . . . , zN ∈ γ and P(j)(zk) = wk,j for all k and j?
∼ approximation with polynomials with prescribed/restricted zeros;
taking log derivative, approximation with simple partial fractions
(spf)/simplest fractions/logarithmic derivatives of polynomials
(ldp).
Note that N may depend on the values wj ,k too. It is interesting
even when γ = ∂D and m1 = . . . = mk = 0.
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Comparing Erőd’s result with our conjecture:
As earlier, let 0 ≤ a ≤ 1, E := {x + iy : x2 + y2/a2 ≤ 1} and
denote Green’s function of E by gE (z) = gC∞\E (z ,∞). Then, we
have at z ∈ ∂E

∂

∂n(z)
gE (z) ≥ a√

1 + a2 − |z |2
.
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Comparing Révész’ result with our conjecture:
Conjecture: for any convex set K with C 2 smooth boundary,

∂

∂n(z)
gK (z) ≥ 1

2πdiam(K )

at any z ∈ ∂K .

Assuming this, and using the immediate assertion

1

2πdiam(K )
≥ 0.0003

w(k)

diam(K )2
1

2
.

we can derive Révész’ result.
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It is worth mentioning two new papers:
* Glazyrina-Révész, arxiv 1805.04822, compact convex sets, Lq

norms, Turán type inequality for polynomials
* Erdélyi, manuscript, sharp estimates for real polynomials on [0, 1]
when there are fixed number of zeros at 0.

All comments, suggestions are welcome.
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Thank you for your attention!
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