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Incompressible Euler Equations: Eulerian frame

Incompressible inviscid flows are described by the equation of mass
conservation

ux + vy = 0

coupled with the Euler equations{
ut + uux + vuy = −Px

vt + uvx + vvy = −Py
,

where (u(t, x , y), v(t, x , y)) is the velocity field in the time and
space variables (t, x , y) and the scalar function P(t, x , y)
represents the pressure.



For a given velocity field (u(t, x , y), v(t, x , y)), the motion of the
individual particles (x(t), y(t)) is obtained by integrating the
system of ordinary differential equations{

x ′(t) = u(t, x , y)
y ′(t) = v(t, x , y)

whereas the knowledge of the particle path t 7→ (x(t), y(t))
provides by differentiation with respect to t the velocity field at
time t and at the location (x(t), y(t)).



Incompressible Euler Equations: Lagrangian coordinates

Starting with a simply connected domain Ω0, representing the
labelling domain, each label (a, b) ∈ Ω0 identifies by means of the
injective map

(a, b) 7→ F t(a, b) = (x(t, a, b), y(t, a, b))

the evolution in time of a specific particle, the fluid domain at time
t, Ωt , being the image of Ω0 under F t .



The governing equations in Lagrangian coordinates

Using the relations {
∂
∂a = xa

∂
∂x + ya

∂
∂y

∂
∂b = xb

∂
∂x + yb

∂
∂y

,

we see that the equation of mass conservation becomes

Jt = 0 .

Euler’s equations take the form

(xaxbt + yaybt − xbxat − ybyat)t = 0 .



Explicit solutions

I Gerstner’s flow (found in 1809 and re-discovered in 1863 by
Rankine):

F t(a, b) = (x(t, a, b), y(t, a, b))

=

(
a +

ekb

k
sin(k(a + ct)), b − ekb

k
cos(k(a + ct))

)
,

where kc2 = g and (a, b) ∈ Ω0 = {(a, b) : b < 0},
I Kirchhoff’s elliptical vortex, found in 1876,

I and the Ptolemaic vortices found in 1984 by Abrashkin and
Yakubovich.



Gerstners flow (1809)

F t(a, b) = (x(t, a, b), y(t, a, b))

=

(
a +

ekb

k
sin(k(a + ct)), b − ekb

k
cos(k(a + ct))

)
.

Use

(a, b) ≈ a + ib = z and (x , y) ≈ x + iy = F = f + g ,

where z ∈ Ω0 = {z ∈ C : Im{z} < 0} and f and g are analytic in
Ω0 because

xaa + xbb = yaa + ybb = 0!



A. Aleman and A. Constantin: find all solutions which in
Lagrangian variables present a labelling by harmonic functions.

Theorem: Assume that there exist z1, z2 ∈ Ω0 and an open set
I ⊂ (0,∞) such that for all t ∈ I the vectors(

f ′(t, zj)
igt(t, zj)

)
j=1,2

are linearly independent. The solutions f (t, z) + g(t, z) are then
given by (

f (t, z)
g(t, z)

)
=

(
α(t) β(t)
c(t) d(t)

)(
u0(z)
v0(z)

)
,

where u′0 and v ′0 are linearly independent, αd − βc 6= 0 on I , and




A′A− cc ′ = ik1
B ′B − dd ′ = ik2
B ′A− dc ′ = k3
A′B − cd ′ = −k3 ,

where k1, k2 ∈ R, k3 ∈ C, A′ = α, and B ′ = β.

I Let Ω0 be a convex domain whose boundary does not contain
line segments, and let f , g be analytic functions in Ω0 whose
derivatives extend continuously to Ω0 and satisfy

Re{f ′(z)} > |g ′(z)| , z ∈ Ω0 .

Then the harmonic map z 7→ f (z) + g(z) is univalent
(one-to-one) in Ω0.



Harmonic mappings

A harmonic mapping F in a simply connected domain Ω ⊂ C can
be written as

F = f + g ,

where both f and g are analytic in Ω.

I F is analytic if and only if g is constant,

I If F is harmonic and ϕ is analytic, then F ◦ ϕ is harmonic,

I Given a harmonic mapping F , the composition A ◦ F , where A
is an affine harmonic mapping of the form

A(z) = az + bz + c , a, b, c ∈ C ,

is harmonic as well.



Harmonic mappings

F = f + g .

Lewy (1936) F is locally univalent if and only if its Jacobian

JF = |f ′|2 − |g ′|2 = |f ′|2(1− |ω|2) 6= 0 .

Here, ω = Fz/Fz = g ′/h′ is the (second complex) dilatation of F .

A locally univalent harmonic mapping is orientation-preserving if
JF > 0 (that is, if -and only if- f is locally univalent and ω is an
analytic function with ‖ω‖∞ ≤ 1).



The harmonic Koebe function

K = f + g ,

where f and g are the analytic functions in D given by

f (z) =
z − 1

2z
2 + 1

6z
3

(1− z)3
= z +

5

2
z2 +

∞∑
n=3

anz
n

and

g(z) =
1
2z

2 + 1
6z

3

(1− z)3
=
∞∑
n=2

bnz
n .

I K is univalent (one-to-one) in D and satisfies
f (0) = g(0) = 1− f ′(0) = 0, g ′(0) = 0. Also,{

f (z)− g(z) = k(z) = z
(1−z)2

g ′(z)/f ′(z) = z
, z ∈ D .



Univalent harmonic mappings in the unit disk

A harmonic mapping F = f + g in the unit disk belongs to the
class SH if it is orientation-preserving, univalent in D, and satisfies

f (0) = g(0) = 1− f ′(0) = 0.

The functions
Fn(z) = z +

n

n + 1
z ∈ SH .

S0H = {F ∈ SH : g ′(0) = 0} .

I If F ∈ SH , then

F − ω(0)F

1− |ω(0)|2
= A ◦ F ∈ S0H .



The Schwarzian derivative

The Schwarzian derivative of a locally univalent analytic function
ϕ in the unit disk is defined by

S(ϕ) =

(
ϕ′′

ϕ′

)′
− 1

2

(
ϕ′′

ϕ′

)2

= (P(ϕ))′ − 1

2
(P(ϕ))2 ,

where P(ϕ) is the pre-Schwarzian derivative of ϕ.

Remark.

P(ϕ) =
ϕ′′

ϕ′
=

∂

∂z

(
log |ϕ′|2

)
=

∂

∂z
(log Jϕ) .

Therefore,

S(ϕ) =
∂2

∂z2
(log Jϕ)− 1

2

(
∂

∂z
(log Jϕ)

)2

.



The Schwarzian derivative (& Newton & Halley)

Discovered by Lagrange in his treatise “Sur la construction des
cartes gographiques” (1781); the Schwarzian also appeared in a
paper by Kummer (1836), and it was named after Schwarz by
Cayley. However, this operator comes up naturally in the numerical
method of approximation of zeros of functions due to Halley
(1656-1742)!



The Schwarzian derivative (& Newton & Halley)

Newton’s method: xn+1 = xn − f (xn)
f ′(xn)

≡ α ≈ x − f (x)
f ′(x) .

0 = f (α) ≈ f (x) + f ′(x)(α− x) +
f ′′(x)

2
(α− x)2 + . . .



The Schwarzian derivative (& Newton & Halley)

Newton’s method: xn+1 = xn − f (xn)
f ′(xn)

≡ α ≈ x − f (x)
f ′(x) .

0 = f (α) ≈ f (x) + f ′(x)(α− x) +�������f ′′(x)

2
(α− x)2 +��. . .

α ≈ x − f (x)

f ′(x)
= FN(x) .

A straightforward calculation shows F ′′N(α) = f ′′(α)
f ′(α) = P(f )(α).

α− x ≈ − f (x)

f ′(x)



The Schwarzian derivative (& Newton & Halley)
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f ′(xn)

≡ α ≈ x − f (x)
f ′(x) .

0 = f (α) ≈ f (x) + f ′(x)(α− x) +�������f ′′(x)

2
(α− x)2 +��. . .

α ≈ x − f (x)

f ′(x)
= FN(x) .

A straightforward calculation shows F ′′N(α) = f ′′(α)
f ′(α) = P(f )(α).

α− x ≈ − f (x)

f ′(x)



The Schwarzian derivative (& Newton & Halley)

Halley’s method: xn+1 = xn − 2f (xn)f ′(xn)

2(f ′(xn))
2−f (xn)f ′′(xn)

.

≡ α ≈ x − 2f (x)f ′(x)

2 (f ′(x))2 − f (x)f ′′(x)
= FH(x) .

0 = f (α) ≈ f (x) + f ′(x)(α− x) +
f ′′(x)

2
(α− x)2 +��. . .

≈ f (x) + (α− x)

(
f ′(x) +

f ′′(x)

2
(α− x)

)
≈ f (x) + (α− x)

(
f ′(x) +

f ′′(x)

2

(
− f (x)

f ′(x)

))
.

And... F ′′′H (α) = −S(f )(α).



The Schwarzian derivative

S(ϕ) =

(
ϕ′′

ϕ′

)′
− 1

2

(
ϕ′′

ϕ′

)2

.

I If the composition ϕ ◦ ψ is well defined,

S(ϕ ◦ ψ) = S(ϕ)(ψ) ·
(
ψ′
)2

+ S(ψ) .

I The Schwarzian norm or the locally univalent function ϕ in D
equals

‖S(ϕ)‖ = sup
z∈D
|S(ϕ)(z)|(1− |z |2)2 .



Univalence criteria

Let ϕ be a locally univalent analytic function in D.

I (Becker, 1962) If

‖P(ϕ)‖ = sup
z∈D
|P(ϕ)(z)|(1− |z |2) ≤ 1

or

I (Nehari, 1949) If

‖S(ϕ)‖ = sup
z∈D
|S(ϕ)(z)|(1− |z |2)2 ≤ 2 ,

then ϕ is globally univalent in D.



The harmonic Schwarzian derivative

The harmonic Schwarzian derivative of the locally univalent
harmonic mapping F is defined by

SH(F ) =
∂2

∂z2
(log JF )− 1

2

(
∂

∂z
(log JF )

)2

=
∂

∂z
(PH(F ))− 1

2
(PH(F ))2 .

I SH(F ) = SH(F ) and SH(f + g) = SH(f + µg) for all |µ| = 1.

I If F = f + g is an orientation preserving harmonic mapping
with dilatation ω = g ′/f ′,

SH(F ) = S(f )− ω

1− |ω|2

(
ω′

f ′′

f ′
− ω′′

)
− 3

2

(
ω ω′

1− |ω|2

)2

.



The harmonic Schwarzian derivative

SH(F ) = S(f )− ω

1− |ω|2

(
ω′

f ′′

f ′
− ω′′

)
− 3

2

(
ω ω′

1− |ω|2

)2

.

I If F is analytic then SH(F ) = S(F ).

I Let F be orientation-preserving harmonic mapping and let ϕ
be an analytic function such that the composition F ◦ ϕ is
well-defined. Then

SH(F ◦ ϕ) = SH(F )(ϕ) ·
(
ϕ′
)2

+ S(ϕ).

I Let A be a locally univalent affine harmonic mapping. That is,
A(z) = az + bz + d , where |a| 6= |b|. Then

SH(A ◦ F ) = SH(F ) .



Univalence criteria

Let F be a locally univalent harmonic function in D.

I If

sup
z∈D

(
|PH(F )(z)|(1− |z |2) +

|ω′(z)|(1− |z |2)

1− |ω(z)|2

)
≤ 1

or

I

‖SH(F )‖ = sup
z∈D
|SH(F )(z)|(1− |z |2)2 ≤ δ0 ,

then F is globally univalent in D.



Moreover,

Two locally univalent functions F1 and F2 on a simply connected
domain Ω0 with non-constant dilatation have equal harmonic
pre-Schwarzian derivative if and only if there exists an affine
transformation A and an anti-analytic rotation Rµ such that

F2 = (A ◦ Rµ)(F1) .

Wait...

PH(F ) =
∂

∂z
(log JF ) .

And we obtain the following relation between two harmonic
functions F1 = f1 + g1 and F2 = f2 + g2 with equal Jacobian:(

f2
g2

)
=

(
a b

b a

)(
1 0
0 µ

)(
f1
g1

)
,

where |a|2 − |b|2 = 1. Wait...the mass conservation equation
reads... Jt = 0!!
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Moreover,
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∂
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Theorem

Let Ω0 ⊂ C be a simply connected domain. Assume that the initial
harmonic (univalent, orientation-preserving) labelling map
F0 = f0 + g0 is such that f ′0 and g ′0 are linearly independent. The
particle motion of a fluid flow in Lagrangian coordinates is either
described by(

f (t, z)
g(t, z)

)
=

(
a(t) b(t)

b(t) a(t)

)(
f0(z)
g0(z)

)
,

where b : [0,∞)→ C is a C 1 function and

a(t) =
√

1 + |b(t)|2 e i
∫ t
0

ν0+Im{bt (s)b(s)}
1+|b(s)|2

ds
, ν0 ∈ R ,

or



(
f (t, z)
g(t, z)

)
=

(
e iν0t 0

0 e i(ν0−ξ0)t

)(
f0(z)
g0(z)

)
,

where ν0 ∈ R and ξ0 ∈ R \ {0}.
Univalence holds for the solutions in this second case for all the
functions F t if and only if f0 + λg0 is univalent for all |λ| = 1.



The constant dilatation case

If the initial harmonic labelling map F0 = f0 + g0 satisfies g ′0 = cf ′0
for some |c | < 1, then(

f (t, z)
g(t, z)

)
=

(
a(t) 0

0 b(t)

)(
f0(z)
g0(z)

)
,

where b : [0,∞)→ C is a C 1 function with b(0) = c and

a(t) =
√

1− |c |2 + |b(t)|2 e i
∫ t
0

ν0+Im{bt (s)b(s)}
1−|c|2+|b(s)|2

ds
, ν0 ∈ R .



Thank you very much for your
attention!


