Oscillating wandering domains for entire functions of finite order in the class \mathcal{B}

David Martí-Pete
Department of Mathematics
Kyoto University

- joint work with Mitsuhiro Shishikura -

Complex Analysis and Function Theory 2018
Heraklion, Crete, Greece
July 5, 2018

Sketch of the talk

1. Introduction to Bishop's quasiconformal folding and the construction of a function in the class \mathcal{B} with a wandering domain
2. Definition of the function $f_{w}=g_{w} \circ \phi_{w}^{-1}$ and quasiregular interpolation
3. Estimates for the quasiconformal map ϕ_{w}
4. Diagram of the construction and the domains $\left\{U_{n}\right\}_{n}$
5. Shrink and shoot

Introduction

Let f be a transcendental entire function. We consider the sets:

- the Fatou set of f :

$$
F(f):=\left\{z \in \mathbb{C}:\left\{f^{n}\right\}_{n} \text { is a normal family in an open set } U \ni z\right\}
$$

- the Julia set of f :

$$
J(f):=\mathbb{C} \backslash F(f)
$$

- the escaping set of f :

$$
I(f):=\left\{z \in \mathbb{C}: f^{n}(z) \rightarrow \infty, \text { as } n \rightarrow \infty\right\}
$$

- the set of bounded orbits of f :

$$
K(f):=\left\{z \in \mathbb{C}: \exists R=R(z)>0,\left|f^{n}(z)\right|<R \text { for all } n \in \mathbb{N}\right\}
$$

- the set of unbounded non-escaping orbits of f (a.k.a. the bungee set of f):

$$
B U(f):=\mathbb{C} \backslash(I(f) \cup K(f))
$$

Thus, we have two partitions

$$
\mathbb{C}=F(f) \cup J(f)=I(f) \cup B \cup(f) \cup K(f) .
$$

SO18 D. J. Sixsmith and J. W. Osborne, On the set where the iterates of an entire function are neither escaping nor bounded, Ann. Acad. Sci. Fenn. Ser. A I Math. 41 (2016), 561-578.

Singular values

Given a transcendental entire function f, we define the singular set of f by

$$
S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}
$$

where $\operatorname{sing}\left(f^{-1}\right)$ consists of the critical values and the asymptotic values of f. We will also consider the postsingular set of f

$$
P(f):=\overline{\bigcup_{n \geqslant 0} f^{n}(S(f))}
$$

EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.

Singular values

Given a transcendental entire function f, we define the singular set of f by

$$
S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}
$$

where $\operatorname{sing}\left(f^{-1}\right)$ consists of the critical values and the asymptotic values of f. We will also consider the postsingular set of f

$$
P(f):=\overline{\bigcup_{n \geqslant 0} f^{n}(S(f))}
$$

Among all transcendental entire functions, functions in the following two classes exhibit nicer properties:

$$
\begin{aligned}
\mathcal{B}:=\{ & f \text { transcendental entire function : } S(f) \subseteq \mathbb{D}(0, R) \text { for some } R>0\}, \\
& \mathcal{S}:=\{f \text { transcendental entire function }: \# S(f)<\infty\} \subseteq \mathcal{B} .
\end{aligned}
$$

EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.

Singular values

Given a transcendental entire function f, we define the singular set of f by

$$
S(f):=\overline{\operatorname{sing}\left(f^{-1}\right)}
$$

where $\operatorname{sing}\left(f^{-1}\right)$ consists of the critical values and the asymptotic values of f. We will also consider the postsingular set of f

$$
P(f):=\overline{\bigcup_{n \geqslant 0} f^{n}(S(f))}
$$

Among all transcendental entire functions, functions in the following two classes exhibit nicer properties:

$$
\begin{gathered}
\mathcal{B}:=\{f \text { transcendental entire function : } S(f) \subseteq \mathbb{D}(0, R) \text { for some } R>0\}, \\
\mathcal{S}:=\{f \text { transcendental entire function }: \# S(f)<\infty\} \subseteq \mathcal{B} .
\end{gathered}
$$

Theorem (Eremenko and Lyubich 1992)
If $f \in \mathcal{B}$, then $I(f) \subseteq J(f)$.

EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.

Wandering domains

Suppose that U is a component of $F(f)$ and let U_{n} be the Fatou component that contains $f^{n}(U)$ for $n \in \mathbb{N}$. We say that U is a wandering domain if

$$
U_{m} \cap U_{n} \neq \emptyset \quad \Rightarrow \quad m=n .
$$

If U is a wandering domain, let $L(U) \subseteq \widehat{\mathbb{C}}$ be the set of all limit functions of f^{n} on U.

BHKMT93 W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 18 (1993), 369-375.
EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.
GK86 L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183-192.

Wandering domains

Suppose that U is a component of $F(f)$ and let U_{n} be the Fatou component that contains $f^{n}(U)$ for $n \in \mathbb{N}$. We say that U is a wandering domain if

$$
U_{m} \cap U_{n} \neq \emptyset \quad \Rightarrow \quad m=n .
$$

If U is a wandering domain, let $L(U) \subseteq \widehat{\mathbb{C}}$ be the set of all limit functions of f^{n} on U.
Theorem (Bergweiler, Haruta, Kriete, Meier and Terglane 1993)
Let U be a wandering domain. Then, $L(U) \subseteq\left(J(f) \cap P(f)^{\prime}\right) \cup\{\infty\}$.

BHKMT93 W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 18 (1993), 369-375.
EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.
GK86 L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183-192.

Wandering domains

Suppose that U is a component of $F(f)$ and let U_{n} be the Fatou component that contains $f^{n}(U)$ for $n \in \mathbb{N}$. We say that U is a wandering domain if

$$
U_{m} \cap U_{n} \neq \emptyset \quad \Rightarrow \quad m=n .
$$

If U is a wandering domain, let $L(U) \subseteq \widehat{\mathbb{C}}$ be the set of all limit functions of f^{n} on U.

Theorem (Bergweiler, Haruta, Kriete, Meier and Terglane 1993)

Let U be a wandering domain. Then, $L(U) \subseteq\left(J(f) \cap P(f)^{\prime}\right) \cup\{\infty\}$.
Wandering domains can be classified into the following 3 types:

- U is an escaping wandering domain if $L(U)=\{\infty\}$, that is, $U \subseteq I(f)$;
- U is a bounded orbit wandering domain if $L(U) \subseteq \mathbb{C}$, that is, $U \subseteq K(f)$;
- U is an oscillating wandering domain if $L(U) \supseteq\{\infty, a\}$ for some $a \in \mathbb{C}$, that is, $U \subseteq B U(f)$.

[^0]
Wandering domains

Suppose that U is a component of $F(f)$ and let U_{n} be the Fatou component that contains $f^{n}(U)$ for $n \in \mathbb{N}$. We say that U is a wandering domain if

$$
U_{m} \cap U_{n} \neq \emptyset \quad \Rightarrow \quad m=n .
$$

If U is a wandering domain, let $L(U) \subseteq \widehat{\mathbb{C}}$ be the set of all limit functions of f^{n} on U.

Theorem (Bergweiler, Haruta, Kriete, Meier and Terglane 1993)

Let U be a wandering domain. Then, $L(U) \subseteq\left(J(f) \cap P(f)^{\prime}\right) \cup\{\infty\}$.
Wandering domains can be classified into the following 3 types:

- U is an escaping wandering domain if $L(U)=\{\infty\}$, that is, $U \subseteq I(f)$;
- U is a bounded orbit wandering domain if $L(U) \subseteq \mathbb{C}$, that is, $U \subseteq K(f)$;
- U is an oscillating wandering domain if $L(U) \supseteq\{\infty, a\}$ for some $a \in \mathbb{C}$, that is, $U \subseteq B U(f)$.

Theorem (Eremenko and Lyubich 1992, Goldberg and Keen 1986)

If $f \in \mathcal{S}$, then f has no wandering domains.

[^1]
Bishop's quasiconformal folding

We say that a planar tree T has bounded geometry if

- the edges of T are \mathcal{C}^{2} with uniform bounds;
- the angles between adjacent edges are bounded uniformly away from zero;
- adjacent edges have uniformly comparable lengths;
- for non-adjacent edges e and f, $\operatorname{diam}(e) / \operatorname{dist}(e, f)$ is uniformly bounded;
- the union of edges that meet at a vertex for a uniformly bi-Lipschitz star.

Bis15 C. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1-60.

Bishop's quasiconformal folding

We say that a planar tree T has bounded geometry if

- the edges of T are \mathcal{C}^{2} with uniform bounds;
- the angles between adjacent edges are bounded uniformly away from zero;
- adjacent edges have uniformly comparable lengths;
- for non-adjacent edges e and f, $\operatorname{diam}(e) / \operatorname{dist}(e, f)$ is uniformly bounded;
- the union of edges that meet at a vertex for a uniformly bi-Lipschitz star.

Assume for every component Ω_{j} of $\Omega=\mathbb{C} \backslash T$, there is a conformal map $\tau_{j}: \Omega_{j} \rightarrow \mathbb{H}_{r}$. Then, we define the τ-size of an edge $e \in T$ as the minimum length of the two images of e by τ.

[^2]
Bishop's quasiconformal folding

We say that a planar tree T has bounded geometry if

- the edges of T are \mathcal{C}^{2} with uniform bounds;
- the angles between adjacent edges are bounded uniformly away from zero;
- adjacent edges have uniformly comparable lengths;
- for non-adjacent edges e and $f, \operatorname{diam}(e) / \operatorname{dist}(e, f)$ is uniformly bounded;
- the union of edges that meet at a vertex for a uniformly bi-Lipschitz star.

Assume for every component Ω_{j} of $\Omega=\mathbb{C} \backslash T$, there is a conformal map $\tau_{j}: \Omega_{j} \rightarrow \mathbb{H}_{r}$. Then, we define the τ-size of an edge $e \in T$ as the minimum length of the two images of e by τ.

Theorem (Bishop 2015)

Suppose that T has bounded geometry and every edge has τ-size $\geqslant \pi$. Then there is an entire function f and a K-quasiconformal map ϕ so that

$$
f \circ \phi=\cosh \circ \tau, \quad \text { outside a nbhd } T\left(r_{0}\right) \text { of } T .
$$

K only depends on the bounded-geometry constants of T. The only critical values of f are ± 1 and f has no asymptotic values.

[^3]
Bishop's quasiconformal folding

There is a more general version of the construction that involves 3 types of components:

- R-components: $\tau: \Omega \rightarrow \mathbb{H}_{r}$ and $\sigma=$ cosh, as before;
- L-components: $\tau: \Omega \rightarrow \mathbb{H}_{l}$ and $\sigma=\rho_{w} \exp z$);
- D-components: $\tau: \Omega \rightarrow$ and $\sigma=\rho_{w}\left(z^{d}\right)$.

Theorem (Bishop 2015)

Let T be a bounded-geometry graph and suppose τ is a conformal map from each complementary component to its standard version. Assume that D-components and L-components only share edges with R-components. Assume that on a D-componen with n edgest, τ maps the vertices to the nth roots of unity and on L components τ maps the edges to intervales of length 2π on $\partial \mathbb{H}$, with endpoints in $2 \pi i \mathbb{Z}$. On R-components assume that the τ-sizes fo all edges are $\geqslant 2 \pi$. Then, there is an entire function f and a K-quasiconformal map ϕ so that

$$
f \circ \phi=\sigma \circ \tau, \quad \text { outside a nbhd } T\left(r_{0}\right) \text { of } T .
$$

The only singular values of f are ± 1, the critical values from the D-components and the asymptotic values from the L-components.

[^4]
Bishop's construction of a function in the class B with a wandering domain

Theorem (Bishop 2015, see also Fagella, Godillon and Jarque 2015)

There exists a function in the class \mathcal{B} with a wandering domain.

This function equals $f(z)=\cosh (\lambda \sinh z)$ for $z \in \mathbb{R}_{+}$.

Bis15 C. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1-60.

FGJ15 N. Fagella, S. Godillon and X. Jarque, Wandering domains for composition of entire functions, J. Math. Anal. Appl. 429 (2015), no. 1, 478-496.

Functions of finite order

Let f be a transcendental entire function. We define the order and the lower order of f as

$$
\rho(f):=\limsup _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r} \quad \text { and } \quad \lambda(f):=\liminf _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r}
$$

respectively, where $M(r):=\max _{|z|=r}|f(z)|$.
For example, $\rho\left(e^{z^{k}}\right)=k$ for $k \in \mathbb{N}$, and $\rho\left(e^{e^{z}}\right)=+\infty$.

Hei48 M. Heins, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2) 49 (1948), 200-213.
RRRS11 G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), 200-213.

Functions of finite order

Let f be a transcendental entire function. We define the order and the lower order of f as

$$
\rho(f):=\limsup _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r} \quad \text { and } \quad \lambda(f):=\liminf _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r}
$$

respectively, where $M(r):=\max _{|z|=r}|f(z)|$.
For example, $\rho\left(e^{z^{k}}\right)=k$ for $k \in \mathbb{N}$, and $\rho\left(e^{e^{z}}\right)=+\infty$.
Theorem (Heins 1948)
If $f \in \mathcal{B}$, then $\lambda(f) \geqslant 1 / 2$.

Hei48 M. Heins, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2) 49 (1948), 200-213.
RRRS11 G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), 200-213.

Functions of finite order

Let f be a transcendental entire function. We define the order and the lower order of f as

$$
\rho(f):=\limsup _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r} \quad \text { and } \quad \lambda(f):=\liminf _{r \rightarrow+\infty} \frac{\log \log M(r)}{\log r}
$$

respectively, where $M(r):=\max _{|z|=r}|f(z)|$.
For example, $\rho\left(e^{z^{k}}\right)=k$ for $k \in \mathbb{N}$, and $\rho\left(e^{e^{z}}\right)=+\infty$.

Theorem (Heins 1948)

If $f \in \mathcal{B}$, then $\lambda(f) \geqslant 1 / 2$.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher 2011)

Let $f \in \mathcal{B}$ be a function of finite order or, more generally, a finite composition of such functions. Then, every point of $I(f)$ can be joined to ∞ by a curve in which points escape uniformly.

[^5]
Main theorem

The function $f \in \mathcal{B}$ from Bishop's construction has infinite order as

$$
f(x)=\cosh (\lambda \sinh (\phi(x))) \geqslant \cosh (\lambda \sinh (10 x / \lambda)), \quad \text { for } x \in \mathbb{R}_{+},
$$

where $\lambda \in \pi \mathbb{N}^{*}$.

Theorem (Martí-Pete and Shishikura 2018)

For every $p \in \mathbb{N}$, there exists a transcendental entire function $f_{p} \in \mathcal{B}$ of order $p / 2$ with an oscillating wandering domain.

Fagella, Godillon and Jarque proved that the function from Bishop's example has exactly two grand orbits of wandering domains. We can also modify our construction to obtain the following result.

Theorem (Martí-Pete and Shishikura 2018)

There exists a function $f \in \mathcal{B}$ of finite order with infinitely many grand orbits of wandering domains.

FGJ15 N. Fagella, S. Godillon and X. Jarque, Wandering domains for composition of entire functions, J. Math. Anal. Appl. 429 (2015), no. 1, 478-496.
MS18 D. Martí-Pete and M. Shishikura, Oscillating wandering domains for functions in the Eremenko-Lyubich class, in preparation.

The base map $g(z)=2 \cosh z$

The function $g(z):=2 \cosh z=e^{z}+e^{-z}$ has critical points at $i \pi \mathbb{Z}$, critical values ± 2 and no finite asymptotic value.

Define the reference orbit

$$
x_{0}:=\frac{1}{2}, \quad \text { and } \quad x_{n}:=g^{n}\left(x_{0}\right), \quad \text { for } n \in \mathbb{N},
$$

which escapes to ∞ exponentially fast. Then, for $n \in \mathbb{N}$, define the quantities

$$
d_{n}:=\left\lfloor\frac{x_{n+1}}{x_{n}}\right\rfloor, \quad R_{n}:=\left(d_{n}-\frac{1}{3}\right) \pi, \quad h_{n}:=2 \pi\left\lfloor\frac{x_{n+1}+\pi}{2 \pi}\right\rfloor .
$$

Consider the sets

$$
S_{+}:=\{z \in \mathbb{C}: \operatorname{Re} z>0,|\operatorname{lm} z|<\pi\} .
$$

and, for $n \geqslant 3$,

$$
\begin{gathered}
Q_{n}:=Q\left(x_{n}\right)=\left\{z \in \mathbb{C}:\left|\operatorname{Re} z-x_{n}\right|<1,|\operatorname{lm} z|<\pi\right\} \subseteq S_{+} \\
E_{ \pm n}:=\left\{z \in \mathbb{C}:|\operatorname{Re} z|<2 d_{n} \pi, \quad\left|\operatorname{lm} z \mp h_{n}\right|<2 d_{n} \pi\right\} \subseteq \mathbb{C} \backslash S_{+}, \\
D_{ \pm n}:=\left(\pm i h_{n}, R_{n}\right) \subseteq E_{ \pm n} .
\end{gathered}
$$

Sketch of the function g_{w}

Quasiconformal mappings

Let $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be a \mathcal{C}^{1} homeomorphism that preserves orientation. We define the complex dilatation (or the Beltrami coefficient) of ϕ at a point z by

$$
\mu_{\phi}(z):=\frac{\partial_{\bar{z}} \phi(z)}{\partial_{z} \phi(z)} \in \mathbb{D}
$$

and then, the dilatation of ϕ at a point z is given by

$$
K_{\phi}(z):=\frac{1+\left|\mu_{\phi}(z)\right|}{1-\left|\mu_{\phi}(z)\right|}
$$

We say that ϕ is a K-quasiconformal map, $1 \leqslant K<+\infty$, if

$$
K=K(\phi):=\underset{z \in \mathbb{C}}{\operatorname{ess} \sup } K_{\phi}(z)
$$

A map $g: \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiregular if and only if g can be expressed as

$$
g=f \circ \phi
$$

where $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map and $f: \phi(\mathbb{C}) \rightarrow \mathbb{C}$ is a holomorphic function.

BF14 B. Branner and N. Fagella, Quasiconformal Surgery in Holomorphic Dynamics, with contributions by X. Buff, S. Bullett, A. L. Epstein, P. Hailssinsky, C. Henriksen, C. L. Petersen, K. M. Pilgrim, Tan L. and M. Yampolsky, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014.

Cosh-power interpolation lemma

Lemma

Let $d \in \mathbb{N}$ and define $R:=\left(d-\frac{1}{3}\right) \pi$. Consider the sets

$$
E:=\{z \in \mathbb{C}:|\operatorname{Re} z| \leqslant 2 d \pi,|\operatorname{lm} z| \leqslant 2 d \pi\} \quad \text { and } \quad D:=D(0, R) .
$$

There exists $K_{1} \geqslant 1$ independent of d and a K_{1}-quasiregular map $G: E \rightarrow \overline{\mathbb{E}_{2 d \pi}}$ with supp $\mu_{G} \subseteq E \backslash D$ satisfying that $G(-z)=G(z), G(\bar{z})=\overline{G(z)}$ and

$$
G(z)= \begin{cases}2 \cosh z, & \text { if } z \in \partial E \cup((E \cap i \mathbb{R}) \backslash D) \\ \left(\frac{z}{R}\right)^{2 d}, & \text { if } z \in D\end{cases}
$$

where $\overline{\mathbb{E}_{2 d \pi}}=2 \cosh (E)$.

The map ρ_{w}

Lemma

There exists $K_{2}>1$ such that for all $w \in \overline{\mathbb{D}_{3 / 4}}$, there exists a K_{2}-quasiconformal mapping $\rho_{w}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ such that

$$
\rho_{w}(z)= \begin{cases}z, & \text { if } z \in \partial \mathbb{D}, \\ z+w, & \text { if } z \in \overline{\mathbb{D}_{1 / 8}}\end{cases}
$$

and supp $\rho_{w} \subseteq \overline{\mathbb{D}} \backslash \mathbb{D}_{1 / 8}$. Moreover the Beltrami coefficient $\mu_{\rho_{w}}$ depends holomorphically on $w \in \mathbb{D}_{3 / 4}$.

Definition of f_{w}

Let $G_{n}: E \rightarrow \overline{\mathbb{E}_{2 d \pi}}$ be the quasiregular mapping G as before with $d=d_{n}$ and $R=R_{n}$, so that $E=E_{n}-i h_{n}$ and $D=D_{n}-i h_{n}$. Define $K:=\max \left\{K_{1}, K_{2}\right\}$.

For every sequence $\mathbf{w}=\left(w_{N}, w_{N+1}, w_{N+2}, \ldots\right) \in \mathbb{D}_{3 / 4}^{\mathbb{N}_{N}}$, define the function $g_{w}: \mathbb{C} \rightarrow \mathbb{C}$ as follows:

$$
g_{\mathrm{w}}(z):= \begin{cases}G_{n}\left(z \mp i h_{n}\right), & \text { if } z \in E_{ \pm n} \backslash D_{ \pm n} \text { with } n \geqslant N \\ \rho_{w_{n}} \circ G_{n}\left(z-i h_{n}\right), & \text { if } z \in D_{ \pm n} \text { with } n \geqslant N, \\ 2 \cosh z, & \text { otherwise }\end{cases}
$$

Then g_{w} is a K-quasiregular map such that

$$
\operatorname{supp} \mu_{g_{w}} \subseteq \bigcup_{n \in \mathbb{Z}_{N}} E_{n} \backslash\left(i h_{n},\left(1-\left(\frac{1}{8}\right)^{1 /\left(2 d_{n}\right)}\right) R_{n}\right)
$$

and $g_{w}(z)=g(z)=2 \cosh z$ for all $z \in \mathbb{C} \backslash \bigcup_{n \in \mathbb{Z}_{N}} E_{n}$.
Apply the Measurable Riemann Mapping Theorem to obtain an entire function $f_{w} \in \mathcal{B}$ and a K-quasiconformal map $\phi_{\mathbf{w}}$ such that

$$
f_{w}=g_{w} \circ \phi_{w}^{-1} .
$$

Key Inequality

Theorem (Shishikura 2018)

Given $K>1$, there exist $0<\delta_{1}<1$ and $C>0$ such that if $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map with $\phi(0)=0$ and $0<\left|z_{2}\right| \leq \delta_{1}\left|z_{1}\right|$, then

$$
\left|\log \frac{\phi\left(z_{1}\right)}{z_{1}}-\log \frac{\phi\left(z_{2}\right)}{z_{2}}\right| \leqslant 2 C\left(\left|\iint_{\mathbb{C}} \frac{\mu_{\phi}(z) \varphi_{z_{1}, z_{2}}(z)}{1-\left|\mu_{\phi}(z)\right|^{2}} d x d y\right|+\iint_{\mathbb{C}} \frac{\left|\mu_{\phi}(z)\right|^{2}\left|\varphi_{z_{1}, z_{2}}(z)\right|}{1-\left|\mu_{\phi}(z)\right|^{2}} d x d y\right)
$$

where $\varphi_{z_{1}, z_{2}}(z):=\frac{z_{1}}{z\left(z-z_{1}\right)\left(z-z_{2}\right)}$.

Shi18 M. Shishikura, Conformality of quasiconformal mappings at a point, revisited, preprint arXiv:1802.09137v2, 2018.

Key Inequality

Theorem (Shishikura 2018)

Given $K>1$, there exist $0<\delta_{1}<1$ and $C>0$ such that if $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map with $\phi(0)=0$ and $0<\left|z_{2}\right| \leq \delta_{1}\left|z_{1}\right|$, then

$$
\left|\log \frac{\phi\left(z_{1}\right)}{z_{1}}-\log \frac{\phi\left(z_{2}\right)}{z_{2}}\right| \leqslant 2 C\left(\left|\iint_{\mathbb{C}} \frac{\mu_{\phi}(z) \varphi_{z_{1}, z_{2}}(z)}{1-\left|\mu_{\phi}(z)\right|^{2}} d x d y\right|+\iint_{\mathbb{C}} \frac{\left|\mu_{\phi}(z)\right|^{2}\left|\varphi_{z_{1}, z_{2}}(z)\right|}{1-\left|\mu_{\phi}(z)\right|^{2}} d x d y\right)
$$

where $\varphi_{z_{1}, z_{2}}(z):=\frac{z_{1}}{z\left(z-z_{1}\right)\left(z-z_{2}\right)}$.

Corollary

Let the constants $K>1,0<\delta_{1}<1$ and $C>0$ be as in the previous theorem. If $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map and $\alpha, \beta, \gamma \in \mathbb{C}$ are distinct points with

$$
0<|\gamma-\alpha| \leq \delta_{1}|\beta-\alpha|
$$

then

$$
\left|\log \frac{\phi(\beta)-\phi(\alpha)}{\beta-\alpha}-\log \frac{\phi(\gamma)-\phi(\alpha)}{\gamma-\alpha}\right| \leq C(K-1) \iint_{\text {supp } \mu_{\phi}} \frac{|\beta-\alpha| d x d y}{|(z-\alpha)(z-\beta)(z-\gamma)|}
$$

where supp $\mu_{\phi}=\left\{z \in \mathbb{C}: \mu_{\phi}(z) \neq 0\right\}$.

Shi18 M. Shishikura, Conformality of quasiconformal mappings at a point, revisited, preprint arXiv:1802.09137v2, 2018.

Standing assumption for the QC estimates

Assumption

Suppose that $K>1$ is a fixed constant and that there exists a sequence of discs

$$
B_{m}:=\mathbb{D}\left(\zeta_{m}, r_{m}\right), \quad \text { for } m \in \mathbb{N},
$$

satisfying that
(i) $\left|\zeta_{m}\right| \geqslant 4$ and $r_{m} /\left|\zeta_{m}\right| \leqslant \min \left\{\frac{1}{4}, \delta_{1}\right\}$ for $m \in \mathbb{N}$, where $0<\delta_{1}<1$ is the constant from the Key Inequality
(ii) $\sum_{m=1}^{\infty} \frac{r_{m}}{\left|\zeta_{m}\right|}<+\infty$
(iii) $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map normalised so that $\phi(0)=0, \phi(1)=1$ and

$$
\operatorname{supp} \mu_{\phi} \subseteq \bigcup_{m=1}^{\infty} B_{m}
$$

Standing assumption for the QC estimates

Assumption

Suppose that $K>1$ is a fixed constant and that there exists a sequence of discs

$$
B_{m}:=\mathbb{D}\left(\zeta_{m}, r_{m}\right), \quad \text { for } m \in \mathbb{N},
$$

satisfying that
(i) $\left|\zeta_{m}\right| \geqslant 4$ and $r_{m} /\left|\zeta_{m}\right| \leqslant \min \left\{\frac{1}{4}, \delta_{1}\right\}$ for $m \in \mathbb{N}$, where $0<\delta_{1}<1$ is the constant from the Key Inequality
(ii) $\sum_{m=1}^{\infty} \frac{r_{m}}{\left|\zeta_{m}\right|}<+\infty$
(iii) $\phi: \mathbb{C} \rightarrow \mathbb{C}$ is a K-quasiconformal map normalised so that $\phi(0)=0, \phi(1)=1$ and

$$
\operatorname{supp} \mu_{\phi} \subseteq \bigcup_{m=1}^{\infty} B_{m}
$$

Later on we will apply them with

$$
\zeta_{2 k}=-\zeta_{2 k+1}=i h_{L+k} \quad \text { and } \quad r_{2 k}=r_{2 k+1}=3 R_{L+k}, \quad \text { for } k \in \mathbb{N},
$$

with $L \geqslant N$ sufficiently large, so

$$
B_{m} \supseteq E_{L+m}, \quad \text { for } m \in \mathbb{N},
$$

and $\phi=\phi_{\mathrm{w}}$ the K-quasiconformal map in the definition of f_{w} with $N \geqslant L$.

QC estimate 1

Lemma

Suppose that Assumption holds. For every $\varepsilon>0$, there exists $M_{1}=M_{1}() \in \mathbb{N}$ such that if supp $\mu_{\phi} \subseteq \bigcup_{m=M_{\mathbf{1}}}^{\infty} B_{m}$, then

$$
\left|\log \frac{\phi(\zeta)}{\zeta}\right|_{\mathcal{C}}<\varepsilon \quad \text { for } \zeta \in \mathbb{C} \backslash\{0\}
$$

and, in particular,

$$
e^{-\varepsilon}|\zeta|<|\phi(\zeta)|<e^{\varepsilon}|\zeta| \quad \text { and } \quad|\arg \phi(\zeta)-\arg \zeta(\bmod 2 \pi)|<\varepsilon
$$

for all $\zeta \in \mathbb{C} \backslash\{0\}$.

Here, $\mathcal{C}:=\mathbb{C} / 2 \pi i \mathbb{Z}$ and, for $w \in \mathcal{C}$,

$$
|w|_{\mathcal{C}}:=\inf _{n \in \mathbb{Z}}|w+2 \pi n i|
$$

defines a distance on the cylinder \mathcal{C}.

QC estimate 2

Lemma

Suppose that Assumption holds and suppose also that there exists $C_{1}>0$ such that if $z \in B_{m}$ and $z^{\prime} \in B_{m^{\prime}}$ with $m \neq m^{\prime}$, then $\left|z-z^{\prime}\right| \geq C_{1} \sqrt{\left|z z^{\prime}\right|}$.
For any $0<\kappa<1$, there exists $C_{2}>1$ such that for any $m \in \mathbb{N}$, if $\left|\zeta-\zeta_{m}\right|=\kappa r_{m}$, then

$$
\frac{1}{C_{2}} \kappa r_{m} \leq\left|\phi(\zeta)-\phi\left(\zeta_{m}\right)\right| \leq C_{2} \kappa r_{m}
$$

QC estimate 3

Lemma

Suppose that Assumption holds. For every $0<\theta<2 \pi$, there exists $C_{3}>1$ such that if $\zeta \in \mathbb{C}$ satisfies that

$$
B_{m} \subseteq\{z \in \mathbb{C}: \arg \zeta+\theta<\arg z<\arg \zeta+2 \pi-\theta\} \quad \text { for all } m \in \mathbb{N}
$$

then

$$
\frac{1}{C_{3}} \leq\left|\phi^{\prime}(\zeta)\right| \leq C_{3}
$$

Sketch of the function g_{w}

Domains $\left\{U_{n}\right\}_{n}$ and centers $\left\{c_{n}\right\}_{n}$

For $n \geqslant 3$ define $\widehat{U}_{n, n}:=g^{-1}\left(\mathbb{D}\left(\phi_{\mathrm{w}}\left(i h_{n}\right), C R_{n}\right)\right) \subseteq Q_{n}$, and for $M<j \leqslant n$, define

$$
U_{n, j}:=\phi\left(\widehat{U}_{n, j}\right), \quad \widehat{U}_{n, j-1}:=g^{-1}\left(U_{n, j}\right) \subseteq Q_{j-1}
$$

and finally $U_{n}:=\left(\phi \circ g^{-1}\right)^{M} \circ \phi\left(\widehat{U}_{n, M}\right)$ so that we have the diagram:

$$
\stackrel{\phi}{\longleftarrow} Q_{n-1} \xrightarrow{g} g\left(Q_{n-1}\right) \longleftarrow Q_{n} \xrightarrow{g} g\left(Q_{n}\right) \supseteq \phi\left(\frac{1}{2} D_{n}\right) \stackrel{\phi}{\longleftrightarrow} \frac{1}{2} D_{n} \xrightarrow{g} \mathbb{D}\left(w_{n},\left(\frac{1}{2}\right)^{2 d_{n}}\right)
$$

$$
\begin{array}{llll}
\text { Ui Ui Ui } & \text { Ui }
\end{array}
$$

$$
\cdots \longmapsto \hat{c}_{n, n-1} \longmapsto c_{n, n} \longmapsto \hat{c}_{n, n} \longmapsto \gg\left(i h_{n}\right)
$$

$$
\begin{aligned}
& U_{n} \xrightarrow{\phi^{-1} \circ f^{M}} \widehat{U}_{n, M} \xrightarrow{g} U_{n, M+1}<^{\phi} \cdots \xrightarrow{g} U_{n, j}<{ }^{\phi} \widehat{U}_{n, j} \xrightarrow{g} U_{n, j+1}<^{\phi} \cdots
\end{aligned}
$$

Estimate the inner radius ρ_{n}

There exists $C>0$ such that if we define

$$
\rho_{n}:=\exp \left(-n C-\sum_{j=0}^{n-1} x_{j}-x_{n-1}\right), \quad \text { for } n \geqslant N
$$

then

$$
\mathbb{D}\left(c_{n}(\mathbf{w}), \rho_{n}\right) \subseteq U_{n}, \quad \text { for all } n \geqslant N
$$

One can check that with our definitions there exists $N_{1} \geqslant N$ such that

$$
\left(\frac{1}{2}\right)^{2 d_{n}}<\rho_{n+1}, \quad \text { for } n \geqslant N_{1}
$$

Infinite shooting problem

It just remains to find $\mathbf{w}=\left(w_{N}, w_{N+1}, \ldots\right) \in \mathbb{D}\left(\frac{1}{2}, \frac{1}{8}\right)^{\mathbb{N}_{N}}$ such that

$$
w_{n}=c_{n+1}(\mathbf{w}), \quad \text { for } n \geqslant N .
$$

To achieve this, we write $\mathbf{w}=\left(\mathbf{w}^{\prime}, \mathbf{w}^{\prime \prime}\right)$, where $\mathbf{w}^{\prime}=\left(w_{N}, w_{N+1}, \ldots, W_{T}\right)$ for some $T>N$.

We can use Rouché's Theorem to solve the finite shooting problem for any T with $\mathbf{w}^{\prime \prime}$ being the constant sequence $w_{n}=1 / 2$ for $n>T$. Let \mathbf{w}_{T} be such solution.

Then, we can take a subsequence $\left\{\boldsymbol{w}_{T_{k}}\right\}_{k}$ that converges to some \mathbf{w}_{*} that solves the infinite problem. and then

Summary

- We started with a base function $g(z)=2 \cosh z$, which has order 1 .
- Using the reference orbit $\left\{f^{n}(1 / 2)\right\}_{n}$, we defined sequences $\left\{h_{n}\right\}_{n},\left\{d_{n}\right\}_{n},\left\{R_{n}\right\}_{n}$ and sets $\left\{E_{n}\right\}_{n},\left\{D_{n}\right\}_{n},\left\{Q_{n}\right\}_{n}$.
- For $N \in \mathbb{N}$ and for every sequence $\mathbf{w} \in \mathbb{D}(1 / 2,1 / 8)^{\mathbb{N}_{N}}$, we can define a function g_{w} and integrate to obtain a function $f_{w}=g_{w} \circ \phi_{w}^{-1}$.
- Find $N \in \mathbb{N}$ sufficiently large so that, using the 3 estimates on quasiconformal maps, we can control the function $\phi_{\mathbf{w}}^{-1}$ on the sets $\left\{D_{n}\right\}_{n}$ and $\left\{Q_{n}\right\}_{n}$.
- Check that the size of the domains U_{n} and the powers d_{n} are correct, and solve the shooting problem to find \mathbf{w}_{*}.
- We have $f^{n+2}\left(U_{n}\right) \subseteq U_{n+1}$ for all n sufficiently large, and hence are contained in the grand orbit of an oscillating wandering domain.
- The singular values of f are $\{-2,2\}$ and $\left\{w_{n}\right\}_{n} \subseteq \mathbb{D}$ and hence $f \in \mathcal{B}$, and it has order 1.

$\sum \alpha \varsigma \varepsilon v \chi \alpha \rho \iota \sigma \pi \omega ́ \gamma \iota \alpha \tau \eta \nu \pi \rho \circ \sigma \circ \chi \eta ́ \sigma \alpha \varsigma!$

[^0]: BHKMT93 W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 18 (1993), 369-375.
 EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.
 GK86 L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183-192.

[^1]: BHKMT93 W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math., 18 (1993), 369-375.
 EL92 A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020.
 GK86 L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 183-192.

[^2]: Bis15 C. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1-60.

[^3]: Bis15 C. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1-60.

[^4]: Bis15 C. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), no. 1, 1-60.

[^5]: Hei48 M. Heins, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2) 49 (1948), 200-213.
 RRRS11 G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), 200-213.

