On the branch set of mappings of finite and bounded distortion.

 \mathbb{R} ami Luisto

Univerzita Karlova

2018-07-03

Joint work with Aapo Kauranen and Ville Tengvall

Branched covers, quasiregular mappings and MFD

Holomorphic mappings are always *continuous*, *open* and *discrete*. By the classical *Stoilow theorem*, the converse also holds; a continuous open and discrete map in the plane is holomorphic up to a homeomorphic reparametrization.

In higher dimensions one of the classical generalizations of holomorphic mappings is the class of *quasiregular maps*:

Definition

A mapping $f: \Omega \to \mathbb{R}^n$ is *K*-quasiregular if $f \in W^{1,n}$ and

```
\|Df(x)\|^n \leq KJ_f(x)
```

for almost every $x \in \Omega$.

By Reshetnyak's theorem, quasiregular mappings are always continuous, open and discrete.

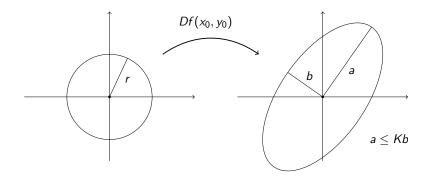


Figure: The canonical picture describing quasiregular mappings via the behaviour of their tangent maps.

We call a continuous, open and discrete mapping a *branched cover*. The set of points where a branched cover f fails to be a local homeomorphism is called *the branch set* of the mapping and we denote it by B_f .

For planar mappings the branch set is a discrete set (think $z \mapsto z^2$). More generally for branched covers between euclidean *n*-domains the branch set has *topological dimension* of at most n - 2.

What can the branch set look like in general?

- ▶ Can the branch set of a branched cover $\mathbb{R}^3 \to \mathbb{R}^3$ be a Cantor set? (Church-Hemmingsen 1960)
- ▶ Can the branch set of a proper branched cover $B^n(0,1) \to \mathbb{R}^n$ be compact? (Vuorinen 1979)
- Can we describe the geometry and the topology of branch set of quasiregular mappings? (Heinonen's ICM address 2002)

More non-trivial examples are needed in order to understand this problem.

Theorem

For every $n \ge 3$ there exists a branched cover $\mathbb{R}^n \to \mathbb{R}^n$ with the branch set equal to the (n-2)-dimensional torus.

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a quasiregular mapping, $n \ge 3$. Then the branch set is either empty or unbounded.

Constructing the example map F in three dimensions

By T_{α} we denote for each $\alpha \in [0, 2\pi)$ the half plane forming angle α with the plane $T_0 = \{(x, 0, z) : x \ge 0\}.$

The mapping $F : \mathbb{R}^3 \to \mathbb{R}^3$ will map each half-plane T_{α} onto itself and the restrictions $F|_{T_{\alpha}}$ will be topologically equivalent to the complex winding map $z \mapsto z^2$.

We define our mapping on each of the closed half-planes $\overline{T_{\alpha}}$. The restrictions will be similar and we denote any and all of the restrictions as f.

On each half-plane the mapping equals a so-called sector winding:



Since the branch of each of these half-plane mappings has a singleton branch set, we see that $B_F = \mathbb{S}^1 \times \{0\}$.

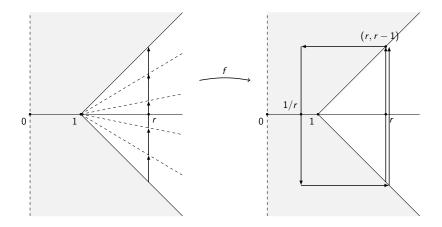
Proof of the positive statement

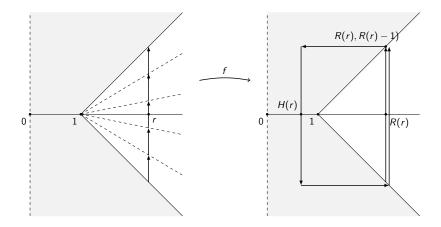
Suppose f is a quasiregular mapping with branch set contained in the open unit ball.

- ▶ Take $h: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ to be the conformal reflection with respect to the sphere.
- ▶ Set $g := (f|_{\mathbb{R}^n \setminus \overline{B}(0,1)}) \circ h \colon B(0,1) \setminus \{0\} \to \mathbb{R}^n$
- The mapping g is now a locally homeomorphic quasiregular mapping.
- By a result of Agard and Marden (1971) such a mapping extends to a local homeomorphism to the whole ball if and only if a certain modulus condition holds for the image of the collection of paths touching the origin. (M(g(Γ₀)) = 0)
- The condition is translates to asking if $M(f(\Gamma_{\infty})) = 0$.
- It happens to hold for quasiregular mappings!
- Thus the original mapping f extends to $\hat{f} : \mathbb{S}^n \to \mathbb{S}^n$
- By topological degree theory, this implies that the infinity point is an isolated branch point, which is impossible in dimensions 3 and above by classical results of Church and Hemmingsen (1960).

What is the extent of these results?

- How badly not-quasiregular is the example map?
- For which class of branched covers does $M(f(\Gamma_{\infty})) = 0$ hold?.





Definition

A mapping $f \in W^{1,1}(\Omega, \mathbb{R}^n)$, defined on an open set $\Omega \subset \mathbb{R}^n$ with $n \geq 2$, is called a *mapping of finite distortion* if $J_f \in L^1_{loc}(\Omega)$, and

$$\|Df(x)\|^n \leq K_f(x)J_f(x)$$

for almost every $x \in \Omega$ where $K_f \in L^1_{loc}$.

Mappings of finite distortion are also branched covers under some mild integrability conditions for K_{f} .

Actual form of main theorems

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a mapping of finite distortion, $n \ge 3$. Suppose that f is a branched cover and

 $K_f(x) \leq o(\log(||x||))$

away from origin. Then the branch set is either empty or unbounded.

Theorem

For every $n \ge 3$ and every $\varepsilon > 0$ there exists a piecewise smooth branched cover $\mathbb{R}^n \to \mathbb{R}^n$ such that f has a branch set equal to the (n-2)-dimensional torus and $K_f(x) \le (\log(||x||))^{1+\varepsilon}$.

Final remarks

- We don't know what happens when $K_f \sim \log(||x||)$.
- ► The example does not answer the question of Vuorinen.
- This is yet another mapping that is essentially a clever winding map.
- More examples of compact branch sets can be extracted from the example.

$Eu\chilpha ho i\sigma au\omega!$