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Branched covers, quasiregular mappings and MFD

Holomorphic mappings are always continuous, open and discrete.
By the classical Stöılow theorem, the converse also holds; a
continuous open and discrete map in the plane is holomorphic up
to a homeomorphic reparametrization.
In higher dimensions one of the classical generalizations of
holomorphic mappings is the class of quasiregular maps:

Definition
A mapping f : Ω→ Rn is K -quasiregular if f ∈W 1,n and

‖Df (x)‖n ≤ KJf (x)

for almost every x ∈ Ω.

By Reshetnyak’s theorem, quasiregular mappings are always
continuous, open and discrete.
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Figure: The canonical picture describing quasiregular mappings via the
behaviour of their tangent maps.



We call a continuous, open and discrete mapping a branched
cover. The set of points where a branched cover f fails to be a
local homeomorphism is called the branch set of the mapping and
we denote it by Bf .
For planar mappings the branch set is a discrete set (think z 7→ z2).
More generally for branched covers between euclidean n-domains
the branch set has topological dimension of at most n − 2.

What can the branch set look like in general?

I Can the branch set of a branched cover R3 → R3 be a Cantor
set? (Church-Hemmingsen 1960)

I Can the branch set of a proper branched cover Bn(0, 1)→ Rn

be compact? (Vuorinen 1979)

I Can we describe the geometry and the topology of branch set
of quasiregular mappings? (Heinonen’s ICM address 2002)



More non-trivial examples are needed in order to understand this
problem.

Theorem
For every n ≥ 3 there exists a branched cover Rn → Rn with the
branch set equal to the (n − 2)-dimensional torus.

Theorem
Let f : Rn → Rn be a quasiregular mapping, n ≥ 3. Then the
branch set is either empty or unbounded.



Constructing the example map F in three dimensions

By Tα we denote for each α ∈ [0, 2π) the half plane forming angle
α with the plane T0 = {(x , 0, z) : x ≥ 0}.
The mapping F : R3 → R3 will map each half-plane Tα onto itself
and the restrictions F |Tα will be topologically equivalent to the
complex winding map z 7→ z2.
We define our mapping on each of the closed half-planes Tα. The
restrictions will be similar and we denote any and all of the
restrictions as f .



On each half-plane the mapping equals a so-called sector winding:
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Since the branch of each of these half-plane mappings has a
singleton branch set, we see that BF = S1 × {0}.



Proof of the positive statement
Suppose f is a quasiregular mapping with branch set contained in
the open unit ball.

I Take h : Rn \ {0} → Rn \ {0} to be the conformal reflection
with respect to the sphere.

I Set g := (f |Rn\B(0,1)) ◦ h : B(0, 1) \ {0} → Rn

I The mapping g is now a locally homeomorphic quasiregular
mapping.

I By a result of Agard and Marden (1971) such a mapping
extends to a local homeomorphism to the whole ball if and
only if a certain modulus condition holds for the image of the
collection of paths touching the origin. (M(g(Γ0)) = 0)

I The condition is translates to asking if M(f (Γ∞)) = 0.
I It happens to hold for quasiregular mappings!
I Thus the original mapping f extends to f̂ : Sn → Sn
I By topological degree theory, this implies that the infinity

point is an isolated branch point, which is impossible in
dimensions 3 and above by classical results of Church and
Hemmingsen (1960).



What is the extent of these results?

I How badly not-quasiregular is the example map?

I For which class of branched covers does M(f (Γ∞)) = 0 hold?.
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Actual form of main theorems

Definition
A mapping f ∈W 1,1(Ω,Rn), defined on an open set Ω ⊂ Rn with
n ≥ 2, is called a mapping of finite distortion if Jf ∈ L1loc(Ω), and

‖Df (x)‖n ≤ Kf (x)Jf (x)

for almost every x ∈ Ω where Kf ∈ L1loc.

Mappings of finite distortion are also branched covers under some
mild integrability conditions for Kf .



Actual form of main theorems

Theorem
Let f : Rn → Rn be a mapping of finite distortion, n ≥ 3. Suppose
that f is a branched cover and

Kf (x) ≤ o(log(‖x‖))

away from origin. Then the branch set is either empty or
unbounded.

Theorem
For every n ≥ 3 and every ε > 0 there exists a piecewise smooth
branched cover Rn → Rn such that f has a branch set equal to the
(n − 2)-dimensional torus and Kf (x) ≤ (log(‖x‖))1+ε.



Final remarks

I We don’t know what happens when Kf ∼ log(‖x‖).

I The example does not answer the question of Vuorinen.

I This is yet another mapping that is essentially a clever
winding map.

I More examples of compact branch sets can be extracted from
the example.



Euχαρiστω!


