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Setting and definitions
Given operator A, what can we say about the spectral properties of

A+B for B ∈ Class X?

Classically Class X = {trace cl.}, {Hilb.–Schmidt}, {comp.}.
Here: A, B self-adj. on separable H, Class X = {finite rk}.

Definition

Through Aγ = A+ γ( · , ϕ)ϕ, parameter γ ∈ R realizes all
self-adjoint rank one perturbations (of a given self-adjoint operator
A) in the direction of a cyclic ϕ (WLOG).

Definition

Through A
Γ

= A+ BΓB∗, the symmetric d× d matrices Γ
parametrize all self-adjoint finite rank perturbations with range
contained in that of B. WLOG: RangeB is a cyclic subspace and
B : Cd → H left-invertible on its range.



Classical perturbation theory (A, T = A + B self-adjoint)
Notation A ∼ T means that UA = TU with unitary U , and

A ∼ T (Mod compact operators) means UA = TU +K for
some unitary U and compact K.

Theorem (Weyl–vonNeuman early 1900’s)

A ∼ T (Mod compact operators) ⇔ σess(A) = σess(T ).

Theorem (Kato–Rosenblum 1950’s, Carey–Pincus 1976)

A ∼ T (Mod trace class) ⇔ Aac ∼ Tac, conditions.

Theorem (Aronszajn–Donoghue Theory 1970-80’s)

Spectral type is not stable under rank one perturbations. Complete
information about the eigenvalues, but only a set outside which Aγ
has no singular continuous spectrum. (see later)

Theorem (Poltoratski 2000)

Conditions on purely singular operators ⇒ A ∼ T (Mod rank 1).



Subset of interested people

Unitary rank one perturbations or their corresponding model spaces
were studied by Aleksandrov, Ball, Clark, Douglas–Shapiro–Shields,
Kapustin, Poltoratski, Ross, Sarasson, etc.

A self-adjoint setting was studied by Albeverio–Kurasov,
Aronszajn–Donoghue, delRio, Kato-Rosenblum, Simon, etc.

Finite rank generalizations occur in literature by Albeverio–Kurasov
(extension theory), Gesztesy et al., Kapustin–Poltoratski (no a.c.),
Martin.



What are rank one perturbations related to?
In mathematical physics

Half-line Schrödinger operator Hu = − d2

dx2u+ V u with
changing boundary condition (Weyl 1910)

Anderson-type Hamiltonian Hω = H +
∞∑
m=1

ωm( · , ϕm)ϕm for

orthonormal ϕm and i.i.d. random ωm wrt P
Within analysis

Extension theory of symmetric operators:

Changing boundary conditions of Sturm–Liouville operators
Changing boundary conditions for PDEs

Nehari interpolation problem

Holomorphic composition operators

Rigid functions

Functional models (Nagy–Foiaş, deBr.–Rovn., Nik.–Vasyunin)

Two weight problem for Hilbert/Cauchy transform

Carlesson embedding



What are finite rank perturbations related to?

Describe all self-adjoint extensions of a symmetric operator
with finite deficiency indicees (d, d)

Functional models with matrix-valued characterisic functions
(Nagy–Foiaş, deBr.–Rovn., Nik.–Vasyunin)

Two weight problem for Hilbert/Cauchy transform with
matrix-valued weights



Finite dimensional examples (recall A
Γ

= A + BΓB∗)

Aγ =

(
1 0
0 3

)
+ γ( · , e1)e1 =

(
1 + γ 0

0 3

)
acting on R2.

Here e1 is not cyclic.

Aγ =

(
1 0
0 3

)
+ γ( · , e1 + e2)(e1 + e2) =

(
1 + γ γ
γ 3 + γ

)
.

Here e1 + e2 is cyclic.

Aγ1,γ2 =

(
1 0
0 3

)
+ γ1( · , e1)e1 + γ2( · , e2)e2 =

(
1 + γ1 0

0 3 + γ2

)
.

Even if γ1 = γ2, this cannot be written as rank one
perturbation; The {e1, e2} spans a cyclic subspace.

Cyclicity of A does not necessarily imply that of A
Γ

:

For γ1 = γ2 − 2, Aγ1,γ2 =

(
1 + γ1 0

0 3 + γ2

)
has one mult. 2

EVA. Otherwise, there are two EVA each of mult. 1.

For a k × k matrix, the k eigenvalues depend on the parameters.
Finding EVA and EVE consists of diagonalization UAγ = DU .
Operators on infinite dimensional space (e.g. Hilbert space) reveal
more complicated spectral behavior.



Scalar measure and decomposition

Theorem (Scalar Spectral Theorem)

Let A be a self-adjoint operator on Hilbert space H with (cyclic)
vector ϕ. Then there exists a unique measure µ = µϕ such that

(
(A− λI)−1ϕ,ϕ

)
H

=

∫
R

dµ(t)

t− λ
=
(
(Mt − λI)−11,1

)
L2(µ)

for λ ∈ C\R. Namely, A ∼Mt on L2(µ).

µ contains all the spectral information of operator A.

EVA λ of A is reflected in point mass at λ, i.e. µ{λ} > 0.

Lebesgue decompose the spectral measure dµ = dµac + dµs.

Further decompose dµs = dµp + dµsc.

Through A ∼Mt decompose operator A = Aac ⊕Ap ⊕Asc.



Matrix-valued spectral measures
Define bk := Bek, for k = 1, 2, . . . , d. Consider (singular) form
bounded perturbations, that means that for each k we have
‖(1 + |A|)−1/2bk‖H <∞ where |A| = (A∗A)1/2.

Theorem (Matrix-valued Spectral Theorem)

Let A be a self-adjoint on H with cyclic set {bk}. Then there is a
unique matrix-valued measure M with entries Mi,j so that

B∗(A− zI)−1B =

∫
dM(t)

t− z
for z ∈ C\R,

i.e.
(
(A− zI)−1bj , bi

)
H

=
∫ dMi,j(t)

t−z . Namely, A ∼Mt on

L2(M) = L2(R,M;Cd) with ‖f‖2
L2(M)

=
∫

([dM(t)]f(t), f(t))
Cd
.

We associate scalar spectral measure µ := trM. Then dM = Wdµ
with W = B∗B, B(t) = (̃b1(t), b̃2(t), . . .), and the vector-valued
integral

∫
[dM]f =

∫
W (t)f(t)dµ(t).



Spectral Measure of A
Γ

= A + BΓB∗ and decomposition

The columns of B form a cyclic set for all A
Γ

.

So via the Spectral Theorem,

F
Γ

(z) := B∗(A
Γ
− zI)−1B =

∫
R

dMΓ(t)

t− z
,

defines the family {M
Γ
} of spectral measures of A

Γ
.

With µ
Γ

:= traceM
Γ

and W
Γ

= B∗
Γ
B

Γ
we have

dM
Γ

= W
Γ
dµ

Γ
.

Our goal is to relate M and M
Γ

(or µ and µ
Γ

).
What of rank one pert. theory generalizes to finite rank?

Lebesgue decomp. dµ = wdx+ dµs, w = dµ/dx yields
corresponding decomposition of M:

dM(x) = dMac(x) + dMs(x).



Let G(x) :=
∫
R

dµ(t)
(t−x)2 , and Cauchy transform Fγ(z) :=

∫
R
dµγ(t)
t−z .

Theorem (Aronszajn–Donoghue)

When γ 6= 0, the sets

Sγ =
{
x ∈ R

∣∣∣ lim
y→0

F (x+ iy) = −1/γ;G(x) =∞
}
,

Pγ =
{
x ∈ R

∣∣∣ lim
y→0

F (x+ iy) = −1/γ;G(x) <∞
}
,

C =
{
x ∈ R

∣∣∣ lim
y→0

ImF (x+ iy) 6= 0
}

contain spectral information of Aγ as follows:

(i) The sets Sγ , Pγ and C are mutually disjoint.

(ii) Set Pγ is the set of eigenvalues, and set C (Sγ) is a carrier for
the absolutely (singular) continuous measure, respectively.

(iii) The singular parts of A and Aγ are mutually singular.

Main tool: Aronszajn–Krein formula Fγ = F
1+γF .

Literature provides finer results and pathological examples.

M



Finite rank Kato–Rosenblum (simple proof)

On the upper half plane F
Γ

= (I + FΓ)−1F = F (I + ΓF )−1.

Theorem

For self-adjoint A, T with A ∼ T (Mod finite rank), the absolutely
continuous parts of A and T are unitarily equivalent.

Theorem (Wave operators)

The wave operators exist, i.e. defining WΓ(τ) := eiτAΓe−iτAPac,
where Pac is the orth. proj. onto the absolutely continuous part of
A, the strong limit s-limτ→±∞WΓ(τ) exists.

Idea of proof for wave operators: For any f ∈ L2(Mac) we have

s-limτ→±∞VΓ
PAΓ

ac WΓ(τ)f = (I + ΓF±)f.



Vector mutual singularity of singular parts

Definition

Matrix-valued measures M = Wµ and N = V ν are vector
mutually singular (M ⊥ N) if one can extent W and V so that

RanW (t) ⊥ RanV (t) µ-a.e. and ν-a.e.

Theorem

Singular parts of the matrix-valued measures M and MΓ satisfy

Ms ⊥ ΓMΓ
s Γ and MΓ

s ⊥ ΓMsΓ.

The proof uses spectral representation and a matrix A2 condition.



Aleksandrov Spectral Averaging

Theorem

Let Γ0 be a self-adjoint and Γ1 be a positive definite d× d matrix.
Consider scalar-valued Borel measurable f ∈ L1(R). We have∫

R

∫
R
f(x)dM

Γ0+tΓ1
(x)dt = Γ−1

1

∫
R
f(x)dx.

In particular, for any Borel set B with zero Lebesgue measure
M

Γ0+tΓ1
(B) = 0 for Lebesgue a.e. t ∈ R.



Summary

Spectral Theorem and matrix-valued spectral measures

No Aronszajn–Donoghue for higher rank perturbations

Kato–Rosenblum simple proof and existence of wave operators

Vector mutual singularity of matrix-valued spectral measures

Aleksandrov spectral averaging yields some mutual singularity
also of scalar-valued spectral measures


