Finite Rank Perturbations

Constanze Liaw
University of Delaware and CASPER (Baylor University)

at CAFT in Heraklion, Crete July 2018

This talk is based on current joint work with Sergei Treil. Thanks also to NSF.

Setting and definitions

Given operator A, what can we say about the spectral properties of

$$
A+B \quad \text { for } \quad B \in \text { Class } X ?
$$

- Classically Class $X=\{$ trace cl. $\}$, $\{$ Hilb.-Schmidt $\},\{$ comp. $\}$.
- Here: A, B self-adj. on separable \mathcal{H}, Class $X=\{$ finite rk $\}$.

Definition

Through $A_{\gamma}=A+\gamma(\cdot, \varphi) \varphi$, parameter $\gamma \in \mathbb{R}$ realizes all self-adjoint rank one perturbations (of a given self-adjoint operator $A)$ in the direction of a cyclic φ (WLOG).

Definition

Through $A_{\Gamma}=A+\mathbf{B \Gamma} \mathbf{B}^{*}$, the symmetric $d \times d$ matrices Γ parametrize all self-adjoint finite rank perturbations with range contained in that of \mathbf{B}. WLOG: Range \mathbf{B} is a cyclic subspace and B : $\mathbb{C}^{d} \rightarrow \mathcal{H}$ left-invertible on its range.

Classical perturbation theory $(A, T=A+B$ self-adjoint $)$

- Notation $A \sim T$ means that $U A=T U$ with unitary U, and
- $A \sim T$ (Mod compact operators) means $U A=T U+K$ for some unitary U and compact K.
Theorem (Weyl-vonNeuman early 1900's)
$A \sim T($ Mod compact operators $) \quad \Leftrightarrow \quad \sigma_{\text {ess }}(A)=\sigma_{\text {ess }}(T)$.
Theorem (Kato-Rosenblum 1950's, Carey-Pincus 1976)
$A \sim T($ Mod trace class $) \quad \Leftrightarrow \quad A_{\mathrm{ac}} \sim T_{\mathrm{ac}}$, conditions.
Theorem (Aronszajn-Donoghue Theory 1970-80's)
Spectral type is not stable under rank one perturbations. Completeinformation about the eigenvalues, but only a set outside which A_{γ} has no singular continuous spectrum. (see later)

Theorem (Poltoratski 2000)

Conditions on purely singular operators $\Rightarrow A \sim T(\operatorname{Mod}$ rank 1$)$.

Subset of interested people

Unitary rank one perturbations or their corresponding model spaces were studied by Aleksandrov, Ball, Clark, Douglas-Shapiro-Shields, Kapustin, Poltoratski, Ross, Sarasson, etc.

A self-adjoint setting was studied by Albeverio-Kurasov, Aronszajn-Donoghue, delRio, Kato-Rosenblum, Simon, etc.

Finite rank generalizations occur in literature by Albeverio-Kurasov (extension theory), Gesztesy et al., Kapustin-Poltoratski (no a.c.), Martin.

What are rank one perturbations related to?

In mathematical physics

- Half-line Schrödinger operator $H u=-\frac{d^{2}}{d x^{2}} u+V u$ with changing boundary condition (Weyl 1910)
- Anderson-type Hamiltonian $H_{\omega}=H+\sum_{m=1}^{\infty} \omega_{m}\left(\cdot, \varphi_{m}\right) \varphi_{m}$ for orthonormal φ_{m} and i.i.d. random ω_{m} wrt \mathbb{P}
Within analysis
- Extension theory of symmetric operators:
- Changing boundary conditions of Sturm-Liouville operators
- Changing boundary conditions for PDEs
- Nehari interpolation problem
- Holomorphic composition operators
- Rigid functions
- Functional models (Nagy-Foiaș, deBr.-Rovn., Nik.-Vasyunin)
- Two weight problem for Hilbert/Cauchy transform
- Carlesson embedding

What are finite rank perturbations related to?

- Describe all self-adjoint extensions of a symmetric operator with finite deficiency indicees (d, d)
- Functional models with matrix-valued characterisic functions (Nagy-Foiaș, deBr.-Rovn., Nik.-Vasyunin)
- Two weight problem for Hilbert/Cauchy transform with matrix-valued weights

Finite dimensional examples (recall $A_{\Gamma}=A+\mathbf{B} \Gamma \mathbf{B}^{*}$)

- $A_{\gamma}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)+\gamma\left(\cdot, e_{1}\right) e_{1}=\left(\begin{array}{cc}1+\gamma & 0 \\ 0 & 3\end{array}\right)$ acting on \mathbb{R}^{2}.

Here e_{1} is not cyclic.

- $A_{\gamma}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)+\gamma\left(\cdot, e_{1}+e_{2}\right)\left(e_{1}+e_{2}\right)=\left(\begin{array}{cc}1+\gamma & \gamma \\ \gamma & 3+\gamma\end{array}\right)$. Here $e_{1}+e_{2}$ is cyclic.
- $A_{\gamma_{1}, \gamma_{2}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)+\gamma_{1}\left(\cdot, e_{1}\right) e_{1}+\gamma_{2}\left(\cdot, e_{2}\right) e_{2}=\left(\begin{array}{cc}1+\gamma_{1} & 0 \\ 0 & 3+\gamma_{2}\end{array}\right)$.

Even if $\gamma_{1}=\gamma_{2}$, this cannot be written as rank one perturbation; The $\left\{e_{1}, e_{2}\right\}$ spans a cyclic subspace.

- Cyclicity of A does not necessarily imply that of A_{Γ} :

$$
\text { For } \gamma_{1}=\gamma_{2}-2, A_{\gamma_{1}, \gamma_{2}}=\left(\begin{array}{cc}
1+\gamma_{1} & 0 \\
0 & 3+\gamma_{2}
\end{array}\right) \text { has one mult. } 2
$$

EVA. Otherwise, there are two EVA each of mult. 1.
For a $k \times k$ matrix, the k eigenvalues depend on the parameters.
Finding EVA and EVE consists of diagonalization $U A_{\gamma}=D U$.
Operators on infinite dimensional space (e.g. Hilbert space) reveal more complicated spectral behavior.

Scalar measure and decomposition

Theorem (Scalar Spectral Theorem)

Let A be a self-adjoint operator on Hilbert space \mathcal{H} with (cyclic) vector φ. Then there exists a unique measure $\mu=\mu^{\varphi}$ such that

$$
\left((A-\lambda \mathbf{I})^{-1} \varphi, \varphi\right)_{\mathcal{H}}=\int_{\mathbb{R}} \frac{d \mu(t)}{t-\lambda}=\left(\left(M_{t}-\lambda \mathbf{I}\right)^{-1} \mathbf{1}, \mathbf{1}\right)_{L^{2}(\mu)}
$$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$. Namely, $A \sim M_{t}$ on $L^{2}(\mu)$.

- μ contains all the spectral information of operator A.
- EVA λ of A is reflected in point mass at λ, i.e. $\mu\{\lambda\}>0$.
- Lebesgue decompose the spectral measure $d \mu=d \mu_{\mathrm{ac}}+d \mu_{\mathrm{s}}$.
- Further decompose $d \mu_{\mathrm{s}}=d \mu_{\mathrm{p}}+d \mu_{\mathrm{sc}}$.
- Through $A \sim M_{t}$ decompose operator $A=A_{\text {ac }} \oplus A_{\mathrm{p}} \oplus A_{\text {sc }}$.

Matrix-valued spectral measures

Define $b_{k}:=\mathbf{B e}_{k}$, for $k=1,2, \ldots, d$. Consider (singular) form bounded perturbations, that means that for each k we have $\left\|(1+|A|)^{-1 / 2} b_{k}\right\|_{\mathcal{H}}<\infty$ where $|A|=\left(A^{*} A\right)^{1 / 2}$.

Theorem (Matrix-valued Spectral Theorem)

Let A be a self-adjoint on \mathcal{H} with cyclic set $\left\{b_{k}\right\}$. Then there is a unique matrix-valued measure \mathbf{M} with entries $\mathbf{M}_{i, j}$ so that

$$
\mathbf{B}^{*}(A-z \mathbf{I})^{-1} \mathbf{B}=\int \frac{d \mathbf{M}(t)}{t-z} \quad \text { for } z \in \mathbb{C} \backslash \mathbb{R}
$$

i.e. $\left((A-z \mathbf{I})^{-1} b_{j}, b_{i}\right)_{\mathcal{H}}=\int \frac{d \mathbf{M}_{i, j}(t)}{t-z}$. Namely, $A \sim M_{t}$ on
$L^{2}(\mathbf{M})=L^{2}\left(\mathbb{R}, \mathbf{M} ; \mathbb{C}^{d}\right)$ with $\|f\|_{L^{2}(\mathbf{M})}^{2}=\int([d \mathbf{M}(t)] f(t), f(t))_{\mathbb{C}^{d}}$.
We associate scalar spectral measure $\mu:=\operatorname{tr} \mathbf{M}$. Then $d \mathbf{M}=W d \mu$ with $W=B^{*} B, B(t)=\left(\widetilde{b}_{1}(t), \widetilde{b}_{2}(t), \ldots\right)$, and the vector-valued integral

$$
\int[d \mathbf{M}] f=\int W(t) f(t) d \mu(t)
$$

Spectral Measure of $A_{\Gamma}=A+\mathbf{B} \mathbf{B}^{*}$ and decomposition

- The columns of \mathbf{B} form a cyclic set for all A_{Γ}.
- So via the Spectral Theorem,

$$
F_{\Gamma}(z):=\mathbf{B}^{*}\left(A_{\Gamma}-z \mathbf{I}\right)^{-1} \mathbf{B}=\int_{\mathbb{R}} \frac{d \mathbf{M}_{\Gamma}(t)}{t-z}
$$

defines the family $\left\{\mathbf{M}_{\Gamma}\right\}$ of spectral measures of A_{Γ}.

- With $\mu_{\Gamma}:=\operatorname{trace} \mathbf{M}_{\Gamma}$ and $W_{\Gamma}=B_{\Gamma}^{*} B_{\Gamma}$ we have

$$
d \mathbf{M}_{\Gamma}=W_{\Gamma} d \mu_{\Gamma}
$$

Our goal is to relate \mathbf{M} and \mathbf{M}_{Γ} (or μ and μ_{Γ}). What of rank one pert. theory generalizes to finite rank?

- Lebesgue decomp. $d \mu=w d x+d \mu_{\mathrm{s}}, w=d \mu / d x$ yields corresponding decomposition of \mathbf{M} :

$$
d \mathbf{M}(x)=d \mathbf{M}_{\mathrm{ac}}(x)+d \mathbf{M}_{\mathrm{s}}(x)
$$

Let $G(x):=\int_{\mathbb{R}} \frac{d \mu(t)}{(t-x)^{2}}$, and Cauchy transform $F_{\gamma}(z):=\int_{\mathbb{R}} \frac{d \mu_{\gamma}(t)}{t-z}$.

Theorem (Aronszajn-Donoghue)

When $\gamma \neq 0$, the sets

$$
\begin{aligned}
S_{\gamma} & =\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow 0} F(x+i y)=-1 / \gamma ; G(x)=\infty\right\} \\
P_{\gamma} & =\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow 0} F(x+i y)=-1 / \gamma ; G(x)<\infty\right\} \\
C & =\left\{x \in \mathbb{R} \mid \lim _{y \rightarrow 0} \operatorname{Im} F(x+i y) \neq 0\right\}
\end{aligned}
$$

contain spectral information of A_{γ} as follows:
(i) The sets S_{γ}, P_{γ} and C are mutually disjoint.
(ii) Set P_{γ} is the set of eigenvalues, and set $C\left(S_{\gamma}\right)$ is a carrier for the absolutely (singular) continuous measure, respectively.
(iii) The singular parts of A and A_{γ} are mutually singular.

- Main tool: Aronszajn-Krein formula $F_{\gamma}=\frac{F}{1+\gamma F}$.
- Literature provides finer results and pathological examples.

Finite rank Kato-Rosenblum (simple proof)

On the upper half plane $F_{\Gamma}=(\mathbf{I}+F \Gamma)^{-1} F=F(\mathbf{I}+\Gamma F)^{-1}$.

Theorem

For self-adjoint A, T with $A \sim T(M o d$ finite rank), the absolutely continuous parts of A and T are unitarily equivalent.

Theorem (Wave operators)

The wave operators exist, i.e. defining $\mathcal{W}^{\Gamma}(\tau):=e^{i \tau A_{\Gamma}} e^{-i \tau A} P_{\mathrm{ac}}$, where P_{ac} is the orth. proj. onto the absolutely continuous part of A, the strong limit s-lim ${ }_{\tau \rightarrow \pm \infty} \mathcal{W}^{\Gamma}(\tau)$ exists.

Idea of proof for wave operators: For any $f \in L^{2}\left(\mathbf{M}_{\mathrm{ac}}\right)$ we have

$$
\mathrm{s}-\lim _{\tau \rightarrow \pm \infty} V_{\Gamma} P_{\mathrm{ac}}^{A_{\Gamma}} \mathcal{W}^{\Gamma}(\tau) f=\left(\mathbf{I}+\Gamma F_{ \pm}\right) f
$$

Vector mutual singularity of singular parts

Definition

Matrix-valued measures $\mathbf{M}=W \mu$ and $\mathbf{N}=V \nu$ are vector mutually singular $(\mathbf{M} \perp \mathbf{N})$ if one can extent W and V so that

$$
\operatorname{Ran} W(t) \perp \operatorname{Ran} V(t) \quad \mu \text {-a.e. and } \nu \text {-a.e. }
$$

Theorem

Singular parts of the matrix-valued measures M and M^{Γ} satisfy

$$
\mathbf{M}_{\mathrm{s}} \perp \Gamma \mathbf{M}_{\mathrm{s}}^{\Gamma} \Gamma \quad \text { and } \quad \mathbf{M}_{\mathrm{s}}^{\Gamma} \perp \Gamma \mathbf{M}_{\mathrm{s}} \Gamma
$$

The proof uses spectral representation and a matrix A_{2} condition.

Aleksandrov Spectral Averaging

Theorem

Let Γ_{0} be a self-adjoint and Γ_{1} be a positive definite $d \times d$ matrix. Consider scalar-valued Borel measurable $f \in L^{1}(\mathbb{R})$. We have

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) d \mathbf{M}_{\Gamma_{0}+t \Gamma_{1}}(x) d t=\Gamma_{1}^{-1} \int_{\mathbb{R}} f(x) d x
$$

In particular, for any Borel set B with zero Lebesgue measure $\mathbf{M}_{\Gamma_{0}+t \Gamma_{1}}(B)=\mathbf{0}$ for Lebesgue a.e. $t \in \mathbb{R}$.

Summary

- Spectral Theorem and matrix-valued spectral measures
- No Aronszajn-Donoghue for higher rank perturbations
- Kato-Rosenblum simple proof and existence of wave operators
- Vector mutual singularity of matrix-valued spectral measures
- Aleksandrov spectral averaging yields some mutual singularity also of scalar-valued spectral measures

