Quasisymmetric Embeddings of Slit Sierpiński Carpets into \mathbb{R}^2

Wenbo Li

Graduate Center, CUNY

CAFT, July 21, 2018

Sierpiński Carpet

• S₃ - the standard Sierpiński carpet in [0,1]².

Figure: Finite generation of standard Sierpiński carpet

- Whyburn's Theorem: $X = \mathbb{S}^2 \setminus \bigcup_i^{\infty} D_i \stackrel{\text{homeo}}{\approx} S_3$ if • $\overline{D_i} \cap \overline{D_j} = \emptyset, \ \forall \ i \neq j.$ • $\underline{\dim(D_i)} \to 0, \text{ as } i \to \infty.$ • $\overline{(\bigcup_i D_i)} = \mathbb{S}^2.$
- A metric space (X, d) is a (metric) carpet if $X \stackrel{\text{homeo}}{\approx} S_3$.

Quasiconformality and Quasisymmetry

- $f: X \longrightarrow Y$ homeomorphism
- f is (metrically) quasiconformal if $\exists K \ge 1$ s.t.

$$H_{f}(x) = \limsup_{r \to 0} \frac{\sup\{d_{Y}(f(x), f(y)) : d_{x}(x, y) \le r\}}{\inf\{d_{Y}(f(x), f(y)) : d_{x}(x, y) \ge r\}} \le K$$

for all $x \in X$.

• *f* is quasisymmetric if \exists homeomorphism $\eta : [0, \infty) \rightarrow [0, \infty)$ s.t.

$$\frac{d_{Y}(f(x), f(y))}{d_{Y}(f(x), f(z))} \leq \eta \left(\frac{d_{X}(x, y)}{d_{X}(x, z)}\right)$$

for all $x, y, z \in X$ with $x \neq z$.

Question 1 Is every carpet $X \stackrel{\text{\tiny BL}}{\approx} S_3$? NO. Easy. S_5 . Using Hausdorff dimension. Question 2 Is every carpet $X \stackrel{\text{\tiny QS}}{\approx} S_3$? NO. Hard. S_5 . (Bonk Merenkov) Question 3 Is every carpet $X \stackrel{\text{\tiny QS}}{\leftrightarrow} \mathbb{R}^2$? NO. A self-similar slit carpet. (Merenkov, Wildrick) Question 4 Is every group boundary carpet $X \stackrel{\text{\tiny QS}}{\leftrightarrow} \mathbb{R}^2$? Not known.

Kapovich-Kleiner conjecture (simplified version): Every group boundary carpet X can be quasisymmetrically embedded into \mathbb{R}^2 .

General Problem: Characterize carpets which can be quasisymmetrically embedded into \mathbb{R}^2 .

Our Result: We give a complete characterization for a special kind of carpets.

Slit Domains

Dyadic slit domain of *n*th-generation corresponding to **r** = {r_i}[∞]_{i=0}:

$$S_n(\mathbf{r}) = [0,1]^2 \setminus \left(\bigcup_{i=0}^n \bigcup_{j=1}^{2^i} s_{ij} \right),$$

- $s_{ij} \subset \Delta_{ij}$ where Δ_{ij} is a dyadic square of generation i
- The center of s_{ij} coincides with the center of Δ_{ij}
- $l(s_{ij_1}) = l(s_{ij_2}) = r_i \cdot \frac{1}{2^i}$ for $j_1, j_2 \in \{1, \ldots, 2^i\}$.

Figure: Slit domains corresponding to $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ and $(\frac{1}{10}, \frac{2}{5}, \frac{1}{8}, \frac{1}{2})$

Slit Sierpiński Carpets

- Let r = {r_i}[∞]_{i=0} be a sequence satisfying:
 r_i ∈ (0, 1), ∀i ∈ N
 lim sup_{i→∞} r_i < 1
- $\mathscr{S}_n(\mathbf{r}) = \overline{\mathcal{S}_n(\mathbf{r})}$ equipped with the path metric.
- The limit

$$\mathscr{S}(\mathbf{r}) = \lim_{\substack{n \to \infty \\ \text{G-H limit}}} \mathscr{S}_n(\mathbf{r})$$

is called a dyadic slit Sierpiński carpet corresponding to r.

- $\mathcal{S}(\mathbf{r}) = [0,1]^2 \setminus \left(\bigcup_{i=0}^{\infty} \bigcup_{j=1}^{2^i} s_{ij} \right).$
- $\mathscr{S}(\mathbf{r})$ is a metric carpet.

Transboundary Modulus

 Let Γ be a family of curves in metric measure space (X, d, μ). The transboundary 2-modulus of Γ with respect to {K_i} is defined as

$$\operatorname{tr-mod}_{X,\{K_i\}}(\Gamma) = \inf\left\{\int_{X\setminus\bigcup_i K_i} \rho^2 d\mu + \sum_{i\in I} \rho_i^2\right\}$$

where infimum is taken over all Borel function $\rho: X \setminus \bigcup_i K_i \to (0, \infty]$, and weights $\rho_i \ge 0$ such that

$$\int_{\gamma \cap X \setminus \bigcup_i K_i} \rho \, ds + \sum_{\gamma \cap K_i \neq \phi} \rho_i \ge 1, \ \forall \gamma \in \Gamma.$$

Theorem 1 (Upper bound, Hakobyan-Li, 2017)

Let $\Gamma = \Gamma(L, R, \mathbb{I})$ and \mathcal{K}_n be the collection of all slits in $\mathcal{S}_n(\mathbf{r})$. Then

$$tr - mod_{\mathbb{I},\mathcal{K}_n}(\Gamma) \leq \prod_{i=0}^n (1 - \epsilon r_i^2) + 3\epsilon$$

for $\forall \epsilon$ small enough.

Lemma 2

Let $\Gamma_{io} = \Gamma(s_0, \partial \mathbb{I}, \mathbb{I} \setminus s_0)$. If $\{r_i\} \notin \ell^2$, then

$$\lim_{n\to\infty} tr - mod_{\mathbb{I}\setminus s_0, \mathcal{K}_n\setminus\{s_0\}}(\Gamma_{io}) = 0.$$

Proof of Theorem

Figure: Slit collar $\rho_n^{\epsilon}(x) = \chi_{\mathbf{B}_n^{\epsilon} \cup \mathbf{R}_n^{\epsilon}}(x) = \chi_{\mathbb{I} \setminus \mathbf{O}_n^{\epsilon}}(x) \qquad A(\rho, \rho_i) \leq \prod_{i=0}^n (1 - \epsilon r_i^2) + 3\epsilon.$ $\rho_n^j = \begin{cases} \epsilon l(v_j), & v_j \text{ are chosen slits} \\ 0, & \text{otherwise} \end{cases}$

Proof of Theorem

Figure: admissible

- Replacing each curve with a new one.
- the new curve is in $\mathbb{I} \times \mathbf{O}_n^{\epsilon}$.
- the new curve is "shorter" than the old one.

Main Theorem (Hakobyan-Li, 2017)

 $\mathscr{S}(\mathbf{r})$ can be quasisymmetrically embedded into \mathbb{R}^2 if and only if $\mathbf{r} = \{r_i\}_{i=0}^{\infty} \in \ell^2$.

$\mathbf{r} \notin \ell^2 \Longrightarrow \nexists \varphi : \mathscr{S}(\mathbf{r}) \hookrightarrow \mathbb{R}^2$ quasisymmetrically

• Suppose not, i.e. $\exists \varphi : \mathscr{S} \hookrightarrow \mathbb{R}^2$, where φ is η -QS. • $\exists f_n : S_n \to \mathbb{R}^2$ is quasiconformal.

Figure: An illustration of $f_2 = \psi_2 \circ \varphi_2 \circ i_2$.

Wenbo Li 13 / 17

$\mathbf{r} \notin \ell^2 \Longrightarrow \nexists \varphi : \mathscr{S}(\mathbf{r}) \hookrightarrow \mathbb{R}^2$ quasisymmetrically

- **③** If $\{r_i\} \notin \ell^2$ then tr-mod(Γ_{io}) → 0 as $n \to \infty$.(Lemma 2)
- tr-mod $(f_n(\Gamma_{io})) = \frac{2\pi}{\log \frac{R_n}{r_n}} > \epsilon > 0$, since quasisymmetry on inner and outer boundary.
- **③** 0 < ϵ < tr-mod($f_n(\Gamma_{io})$) ≤ C · tr-mod(Γ_{io}) → 0. Contradiction.

Figure: An illustration of the proof.

Wenbo Li 14 / 17

Corollary 3

There exists a doubling, linearly locally contractible metric space X which is homeomorphic to \mathbb{R}^2 or \mathbb{S}^2 such that

- X is not quasisymmetrically embedded into \mathbb{R}^2 or \mathbb{S}^2 , respectively.
- Every weak tangent of X is quasisymmetric equivalent to \mathbb{R}^2 with a uniformly bounded distortion function.

Further Questions and Extensions

• What is a general slit carpet?

A metric carpet which is the closure of a slit domain equipped with path metric and uniformly relatively separated.

- What is the equivalent criterion of planar quasisymmetric embeddability for general slit carpets?
 One guess is that the length of slits in each ball should be *l*²-uniformly relatively bounded.
- Are the statements true for higher dimensions? A similar statement for necessity is valid for higher dimensions. The sufficiency is not known.

A similar statement for corollary 3 in higher dimensions is also valid and is working in progress.

Thank you.