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Theorem: (DeMarco, Koch, McMullen [DKM17]) Let h : S → S be
an arbitrary map defined on a finite set S ⊂ Ĉ with |S | ≥ 3. Then
there exists a sequence of rigid postcritically finite rational maps fn
such that |P(fn)| = |S |, P(fn)→ S and fn|P(fn)→ h|S as n→∞.
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Theorem: (Bishop, L.’ ) Let S ⊂ C be a discrete sequence (no
finite accumulation points) with 4 ≤ |S | ≤ ∞, let h : S → S be
any map, and let ε > 0. Then there exists a transcendental
meromorphic function f : C→ Ĉ and a bijection ψ : S → P(f )
with |ψ(s)− s| → 0 as s →∞, |ψ(s)− s| ≤ ε for all s ∈ S , and
f |P(f ) = ψ ◦ h ◦ ψ−1.
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Question: Given any discrete planar sequence S and some map
h : S → S , does there always exist a meromorphic f so that
P(f ) = S , and f |S = h?


