Semigroups of hyperbolic isometries

CAFT 2018

• We consider the group \mathcal{M}_3 of Möbius transformations acting as the conformal automorphisms of $\widehat{\mathbb{C}}$, which we identify with the Riemann sphere.

- We consider the group \mathcal{M}_3 of Möbius transformations acting as the conformal automorphisms of $\widehat{\mathbb{C}}$, which we identify with the Riemann sphere.
- The action of each Möbius transformation can be extended from the Riemann sphere to a conformal action on the unit ball 𝔅.

- We consider the group \mathcal{M}_3 of Möbius transformations acting as the conformal automorphisms of $\widehat{\mathbb{C}}$, which we identify with the Riemann sphere.
- The action of each Möbius transformation can be extended from the Riemann sphere to a conformal action on the unit ball 𝔅.
- When B is equipped with the hyperbolic metric ρ, the group M₃ is exactly the group of orientation preserving isometries of (B, ρ), and C
 is its ideal boundary.

- We consider the group \mathcal{M}_3 of Möbius transformations acting as the conformal automorphisms of $\widehat{\mathbb{C}}$, which we identify with the Riemann sphere.
- The action of each Möbius transformation can be extended from the Riemann sphere to a conformal action on the unit ball 𝔅.
- When B is equipped with the hyperbolic metric ρ, the group M₃ is exactly the group of orientation preserving isometries of (B, ρ), and C is its ideal boundary.
- We shall also consider the subgroup M₂ ⊂ M₃ that fixes D set-wise and preserves orientation on D.

Möbius semigroups

We are interested in semigroups of Möbius transformations.

Möbius semigroups

We are interested in semigroups of Möbius transformations.

Throughout we shall restrict our attention to *finitely-generated* Möbius semigroups, and refer to these simply as semigroups.

If S is a semigroup, we define its *forward limit set*, denoted $\Lambda^+(S)$ to be the accumulation points of S(0) on $\widehat{\mathbb{C}}$.

If S is a semigroup, we define its *forward limit set*, denoted $\Lambda^+(S)$ to be the accumulation points of S(0) on $\widehat{\mathbb{C}}$.

We define $S^{-1} = \{g^{-1} \mid g \in S\}.$

If S is a semigroup, we define its *forward limit set*, denoted $\Lambda^+(S)$ to be the accumulation points of S(0) on $\widehat{\mathbb{C}}$.

We define
$$S^{-1}=\{g^{-1} \mid g\in S\}.$$

The *backward limit set* of *S*, denoted $\Lambda^{-}(S)$ is the set of accumulation points of $S^{-1}(0)$ on $\widehat{\mathbb{C}}$.

If S is a semigroup, we define its *forward limit set*, denoted $\Lambda^+(S)$ to be the accumulation points of S(0) on $\widehat{\mathbb{C}}$.

We define $S^{-1} = \{g^{-1} \mid g \in S\}.$

The *backward limit set* of *S*, denoted $\Lambda^{-}(S)$ is the set of accumulation points of $S^{-1}(0)$ on $\widehat{\mathbb{C}}$.

Examples: Kleinian groups,

If S is a semigroup, we define its *forward limit set*, denoted $\Lambda^+(S)$ to be the accumulation points of S(0) on $\widehat{\mathbb{C}}$.

We define
$$S^{-1}=\{g^{-1} \mid g\in S\}.$$

The *backward limit set* of *S*, denoted $\Lambda^{-}(S)$ is the set of accumulation points of $S^{-1}(0)$ on $\widehat{\mathbb{C}}$.

Examples: Kleinian groups,
$$S = \left\langle z \mapsto \frac{1}{3}z, \ z \mapsto \frac{1}{3}z + \frac{2}{3} \right\rangle$$
.

$$\Lambda^+(S) \text{ and } \Lambda^-(S) \text{ where } S = \left\langle z \mapsto \frac{a}{1+z}, \ z \mapsto \frac{a-1+2ia^{1/2}}{1+z}, \ z \mapsto \frac{1}{4(1+z)} \right\rangle, \ a = -0.1 + 0.7i.$$

Matthew Jacques (The Open University)

2nd July 2018 4 / 14

We say a semigroup S is *semidiscrete* if the identity element is not an accumulation point of S.

We say a semigroup S is *semidiscrete* if the identity element is not an accumulation point of S.

Theorem 1 (J, Short 2016)

Suppose that $S \subseteq M_2$ is a nonelementary, semidiscrete semigroup. If $\Lambda^+(S) \subseteq \Lambda^-(S)$, then S is a group.

We say a semigroup S is *semidiscrete* if the identity element is not an accumulation point of S.

Theorem 1 (J, Short 2016)

Suppose that $S \subseteq M_2$ is a nonelementary, semidiscrete semigroup. If $\Lambda^+(S) \subseteq \Lambda^-(S)$, then S is a group.

Theorem 2 (J. 2016)

Suppose that $S \subseteq M_3$ is a nonelementary, semidiscrete semigroup. If $\Lambda^+(S) = \Lambda^-(S)$ and this set is not connected, then S is a group.

We say a semigroup S is *semidiscrete* if the identity element is not an accumulation point of S.

Theorem 1 (J, Short 2016)

Suppose that $S \subseteq M_2$ is a nonelementary, semidiscrete semigroup. If $\Lambda^+(S) \subseteq \Lambda^-(S)$, then S is a group.

Theorem 2 (J. 2016)

Suppose that $S \subseteq M_3$ is a nonelementary, semidiscrete semigroup. If $\Lambda^+(S) = \Lambda^-(S)$ and this set is not connected, then S is a group.

Conjecture

Suppose that $S \subseteq \mathcal{M}_3$ is a nonelementary semidiscrete semigroup. If $\Lambda^+(S) = \Lambda^-(S) \neq \widehat{\mathbb{C}}$, then S is a group.

If the forward and backward limit sets are equal, then the following Lemma tells us the semigroup is contained in a Kleinian group.

Lemma

Suppose S is a nonelementary semidiscrete semigroup, and that $\Lambda^+(S) = \Lambda^-(S) = \Lambda$, where Λ is not a circle nor $\widehat{\mathbb{C}}$. Then the elements of \mathcal{M}_3 that fix Λ setwise form a discrete group.

Let G denote the group generated by S.

Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ .

Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ . Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components. Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ . Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components.

• The case where Λ has ∞ -many complementary components is open.

Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ . Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞-many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle.

Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ . Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞-many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle. In both cases the conjecture is true.

Let *G* denote the group generated by *S*. The limit set of *G* is equal to Λ . Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle. In both cases the conjecture is true.
- The rest of this talk will concentrate on the case where Λ has 1 complementary component, Ω, in which case we show that the conjecture is true.

Let G denote the group generated by S. The limit set of G is equal to Λ .

Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle. In both cases the conjecture is true.
- The rest of this talk will concentrate on the case where Λ has 1 complementary component, Ω, in which case we show that the conjecture is true.

Let us take a conformal map $\phi : \mathbb{D} \to \Omega$.

Let G denote the group generated by S.

The limit set of G is equal to Λ .

Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle. In both cases the conjecture is true.
- The rest of this talk will concentrate on the case where Λ has 1 complementary component, Ω, in which case we show that the conjecture is true.

Let us take a conformal map $\phi : \mathbb{D} \to \Omega$.

Again, we denote the conjugate of G and S by ϕ as Γ and Σ respectively.

Let G denote the group generated by S.

The limit set of G is equal to Λ .

Since Λ is not equal to $\widehat{\mathbb{C}}$, then $\widehat{\mathbb{C}} \setminus \Lambda$ has 1, 2 or ∞ -many components.

- The case where Λ has ∞ -many complementary components is open.
- If Λ has 2 complementary components then G is quasi-Fuchsian (or contains an index 2 quasi-Fuchsian subgroup) and Λ is a quasi-circle. In both cases the conjecture is true.
- The rest of this talk will concentrate on the case where Λ has 1 complementary component, Ω, in which case we show that the conjecture is true.

Let us take a conformal map $\phi : \mathbb{D} \to \Omega$.

Again, we denote the conjugate of G and S by ϕ as Γ and Σ respectively.

Then Γ is a Fuchsian group of the first kind.

A continuum Λ is *decomposable* if there exist subcontinua λ_1 and λ_2 , neither empty nor Λ itself, such that $\Lambda = \lambda_1 \cup \lambda_2$. Otherwise Λ is *indecomposable*.

A continuum Λ is *decomposable* if there exist subcontinua λ_1 and λ_2 , neither empty nor Λ itself, such that $\Lambda = \lambda_1 \cup \lambda_2$. Otherwise Λ is *indecomposable*.

Let $\overline{\phi}$ be the Carathéodory extension of ϕ to $\overline{\mathbb{D}}$, that maps \mathbb{S}^1 to the Carathéodory boundary $\overline{\partial}\Omega$ of Ω .

A continuum Λ is *decomposable* if there exist subcontinua λ_1 and λ_2 , neither empty nor Λ itself, such that $\Lambda = \lambda_1 \cup \lambda_2$.

Otherwise Λ is *indecomposable*.

Let $\overline{\phi}$ be the Carathéodory extension of ϕ to $\overline{\mathbb{D}}$, that maps \mathbb{S}^1 to the Carathéodory boundary $\overline{\partial}\Omega$ of Ω .

For prime end $e \in \overline{\partial}\Omega$, let I(e) denote its impression.

A continuum Λ is *decomposable* if there exist subcontinua λ_1 and λ_2 , neither empty nor Λ itself, such that $\Lambda = \lambda_1 \cup \lambda_2$.

Otherwise Λ is *indecomposable*.

Let $\overline{\phi}$ be the Carathéodory extension of ϕ to $\overline{\mathbb{D}}$, that maps \mathbb{S}^1 to the Carathéodory boundary $\overline{\partial}\Omega$ of Ω .

For prime end $e \in \overline{\partial}\Omega$, let I(e) denote its impression.

For $E \subseteq \mathbb{S}^1$ let us define $I(E) = \bigcup_{w \in E} I(\overline{\phi}(w))$.

A continuum Λ is *decomposable* if there exist subcontinua λ_1 and λ_2 , neither empty nor Λ itself, such that $\Lambda = \lambda_1 \cup \lambda_2$.

Otherwise Λ is *indecomposable*.

Let $\overline{\phi}$ be the Carathéodory extension of ϕ to $\overline{\mathbb{D}}$, that maps \mathbb{S}^1 to the Carathéodory boundary $\overline{\partial}\Omega$ of Ω .

For prime end $e \in \overline{\partial}\Omega$, let I(e) denote its impression.

For $E \subseteq \mathbb{S}^1$ let us define $I(E) = \bigcup_{w \in E} I(\overline{\phi}(w))$.

Theorem (Matsuzaki 2004)

Let G be a Kleinian group such that $\Omega(G)$ has one component and $\Lambda(G)$ is a decomposable continuum. Let $\phi : \mathbb{D} \to \Omega(G)$ be a Riemann map, and suppose $\phi^{-1}G\phi = \Gamma$ is a Fuchsian group of the 1st kind. If $E \subseteq \mathbb{S}^1$ is not dense in \mathbb{S}^1 then $I(E) \subsetneq \Lambda$.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$. For suppose towards contradiction that $\Lambda^+(\Sigma) \neq \mathbb{S}^1$, then $\Lambda^+(\Sigma)$ is not dense in \mathbb{S}^1 .

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$. For suppose towards contradiction that $\Lambda^+(\Sigma) \neq \mathbb{S}^1$, then $\Lambda^+(\Sigma)$ is not dense in \mathbb{S}^1 . Hence by Matsuzaki's theorem, $I(\Lambda^+(\Sigma)) \underset{\neq}{\subseteq} \Lambda$.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$. For suppose towards contradiction that $\Lambda^+(\Sigma) \neq \mathbb{S}^1$, then $\Lambda^+(\Sigma)$ is not dense in \mathbb{S}^1 . Hence by Matsuzaki's theorem, $I(\Lambda^+(\Sigma)) \subseteq \Lambda$. Now let us choose $z \in \Lambda \setminus I(\Lambda^+(\Sigma))$, and sequence $f_n \in S$ such that f_n converges ideally to z.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$. For suppose towards contradiction that $\Lambda^+(\Sigma) \neq \mathbb{S}^1$, then $\Lambda^+(\Sigma)$ is not dense in \mathbb{S}^1 . Hence by Matsuzaki's theorem, $I(\Lambda^+(\Sigma)) \underset{\neq}{\subseteq} \Lambda$. Now let us choose $z \in \Lambda \setminus I(\Lambda^+(\Sigma))$, and sequence $f_n \in S$ such that f_n converges ideally to z. By passing to a subsequence if necessary, $\phi^{-1}f_n\phi$ converges ideally to

some point $w \in \Lambda^+(\Sigma)$.

Proposition (J. 2018)

Let S be a semidiscrete semigroup such that $\Lambda^+(S) = \Lambda^-(S)$ is a decomposable continuum whose complement has one component. Then S is a group.

Proof.

By Theorem 1 it is enough to show that $\Lambda^+(\Sigma) = \mathbb{S}^1$. For suppose towards contradiction that $\Lambda^+(\Sigma) \neq \mathbb{S}^1$, then $\Lambda^+(\Sigma)$ is not dense in \mathbb{S}^1 . Hence by Matsuzaki's theorem, $I(\Lambda^+(\Sigma)) \subseteq \Lambda$. Now let us choose $z \in \Lambda \setminus I(\Lambda^+(\Sigma))$, and sequence $f_n \in S$ such that f_n converges ideally to z. By passing to a subsequence if necessary, $\phi^{-1}f_n\phi$ converges ideally to some point $w \in \Lambda^+(\Sigma)$.

Since $z \in I(\overline{\phi}(w)) \subseteq I(\Lambda^+(\Sigma))$ we have a contradiction.

In the case where Λ has one complementary component, it remains to consider the subcase where Λ is an indecomposable continuum.

In the case where Λ has one complementary component, it remains to consider the subcase where Λ is an indecomposable continuum.

Bishop–Jones $H^{\frac{1}{2}-\eta}$ Theorem (Bishop, Jones 1994)

Let ϕ be a conformal mapping from $\mathbb D$ onto Ω . If

$$\iint_{\mathbb{D}} |\phi'(z)| |\mathcal{S}(\phi)(z)|^2 (1-|z|^2)^3 \,\, dxdy < +\infty,$$

then ϕ' belongs to the Hardy space $H^{\frac{1}{2}-\eta}$ for all $\eta \in (0, 1/2)$.

In the case where Λ has one complementary component, it remains to consider the subcase where Λ is an indecomposable continuum.

Bishop–Jones $H^{\frac{1}{2}-\eta}$ Theorem (Bishop, Jones 1994)

Let ϕ be a conformal mapping from $\mathbb D$ onto Ω . If

$$\iint_{\mathbb{D}} |\phi'(z)| |\mathcal{S}(\phi)(z)|^2 (1-|z|^2)^3 \,\, dxdy < +\infty,$$

then ϕ' belongs to the Hardy space $H^{\frac{1}{2}-\eta}$ for all $\eta \in (0, 1/2)$.

Theorem (Bishop, Jones 1994)

If a finitely-generated Kleinian group has a simply connected invariant component that is not a disc, then a.e. point on the boundary with respect to harmonic measure is a twist point.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

On the other hand:

- a parabolic element g ∈ G is accidental if and only if the fixed point of g lies in the impression of two distinct prime ends of Ω; and
- each prime end of Ω has impression Λ (Matsuzaki 2004).

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

On the other hand:

- a parabolic element g ∈ G is accidental if and only if the fixed point of g lies in the impression of two distinct prime ends of Ω; and
- each prime end of Ω has impression Λ (Matsuzaki 2004).

Hence every parabolic map in G is accidental.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

On the other hand:

- a parabolic element g ∈ G is accidental if and only if the fixed point of g lies in the impression of two distinct prime ends of Ω; and
- each prime end of Ω has impression Λ (Matsuzaki 2004).

Hence every parabolic map in G is accidental.

Hence G has no parabolic elements.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

On the other hand:

- a parabolic element g ∈ G is accidental if and only if the fixed point of g lies in the impression of two distinct prime ends of Ω; and
- each prime end of Ω has impression Λ (Matsuzaki 2004).

Hence every parabolic map in G is accidental.

Hence G has no parabolic elements. Hence Γ has no parabolic elements.

A parabolic map $g \in G$ is called *accidental* if its conjugate $\gamma \in \Gamma$ is loxodromic.

There are no accidental parabolic maps in G.

On the other hand:

- a parabolic element g ∈ G is accidental if and only if the fixed point of g lies in the impression of two distinct prime ends of Ω; and
- each prime end of Ω has impression Λ (Matsuzaki 2004).

Hence every parabolic map in G is accidental.

Hence G has no parabolic elements. Hence Γ has no parabolic elements. Hence Γ is cocompact.

For some C > 0 we have the following estimates for all $z \in \mathbb{D}$:

$$|\mathcal{S}(\phi)(z)|\leqslant rac{C}{(1-|z|^2)^2},$$

For some C > 0 we have the following estimates for all $z \in \mathbb{D}$:

$$arsigma S(\phi)(z)ert \leqslant rac{C}{(1-ert zert^2)^2}, \ ert \phi'(z)ert \leqslant rac{C}{(1-ert zert)^3}.$$

For some C > 0 we have the following estimates for all $z \in \mathbb{D}$:

$$ert \mathcal{S}(\phi)(z) ert \leqslant rac{\mathcal{C}}{(1-ert z ert^2)^2}, \ ert \phi'(z) ert \leqslant rac{\mathcal{C}}{(1-ert z ert)^3}.$$

Recall the Bishop–Jones integral

$$\iint_{\mathbb{D}} |\phi'(z)| |\mathcal{S}(\phi)(z)|^2 (1-|z|^2)^3 \,\, d extsf{x} dy < +\infty.$$

Conjecture

Suppose that $S \subseteq \mathcal{M}_3$ is a nonelementary semidiscrete semigroup. If $\Lambda^+(S) = \Lambda^-(S) \neq \widehat{\mathbb{C}}$, then S is a group.

Proposition (J. 2018)

Suppose that $S \subseteq M_3$ is a nonelementary semidiscrete semigroup. If $\Lambda^+(S) = \Lambda^-(S) \neq \widehat{\mathbb{C}}$ and is not a connected set with infinitely many complementary components, then S is a group.

