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Finite Blaschke Products

A finite Blaschke product of degree d ≥ 1 is an analytic function

from D→ D of the form

F (z) = e iψ
d∏

i=1

z − ai
1− aiz

, ai ∈ D.

Theorem. (M. Heins, 1962) Given a set C of d − 1 points in the

unit disk, there exists a unique Blaschke product of degree d with

critical set C .

[ Here, unique = unique up to post-composition with a Möbius

transformation in Aut(D). ]
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Inner functions

An inner function is a holomorphic self-map of D such that for

almost every θ ∈ [0, 2π), the radial limit

lim
r→1

F (re iθ)

exists and is unimodular (has absolute value 1).

We will denote the space of all inner function by Inn.

Different inner functions can have the same critical set. For example,

F1(z) = z and F2(z) = exp( z+1
z−1) have no critical points.
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BS decomposition

An inner function can be represented as a (possibly infinite)

Blaschke product × singular inner function:

B = e iψ
∏
i

− ai
|ai |
· z − ai

1− aiz
, ai ∈ D,

∑
(1− |ai |) <∞.

S = exp

(
−
∫
S1

ζ + z

ζ − z
dσζ

)
, σ ⊥ m, σ ≥ 0.

Here, B records the zero set, while S records the boundary zero

structure.



Inner functions of finite entropy

We will also be concerned with the subclass J of inner functions

whose derivative lies in the Nevanlinna class:

sup
0<r<1

1

2π

∫ 2π

0
log+ |F ′(re iθ)|dθ <∞.

In 1974, P. Ahern and D. Clark showed that F ′ admits a BSO

decomposition, allowing us to define InnF ′ := BS , where B records

the critical set of F and S records the boundary critical structure.



Dyakonov’s question

Question. (K. Dyakonov) To what extent is an inner function in

J determined by its critical structure? What are the possible

critical structures of inner functions?

Theorem. (K. Dyakonov, 2013) F ∈ Aut(D)⇐⇒ InnF ′ = 1.

Theorem. (D. Kraus, 2007) F ∈ MBP ∩J ⇐⇒ InnF ′ ∈ BP.

Theorem. (I, 2017) The map

J /Aut(D)→ Inn /S1, F → InnF ′

is injective but NOT surjective. The image consists of all inner

functions of the form BSµ where B is a Blaschke product and µ is a

measure supported on a countable union of Beurling-Carleson sets.
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Beurling-Carleson sets

Definition. A Beurling-Carleson set E is a closed subset of the unit

circle which has measure 0 such that∑
|Ij | · log

1

|Ij |
<∞,

where {Ij} are the complementary intervals.

[ Measures which do not charge Beurling-Carleson sets also occur

in the description of cyclic functions in Bergman spaces given

indepedently by Korenblum (1977) and Roberts (1979). ]



Background on conformal metrics

The curvature of a conformal metric λ(z)|dz | is given by

kλ = −∆ log λ

λ2
.

Examples. The hyperbolic metric

λD =
2|dz |

1− |z |2

has curvature ≡ −1,

while the Euclidean metric |dz | has curvature ≡ 0.



Liouvillean correspondence

Since curvature is a conformal invariant, if F : D→ D is a

holomorphic map then

λF = F ∗λD =
2|F ′|

1− |F |2

is a conformal metric of curvature ≡ −1 on D \ crit(F ),

but is only

a pseudometric on D. Its logarithm uF = log λF satisfies

∆uF = e2uF + 2π
∑

ci∈crit(F )

δci .

Liouville observed that there is a natural bijection between

Hol(D,D)/AutD and pseudometrics of constant curvature −1 with

integral singularities.
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Nearly-maximal solutions

Consider the Gauss curvature equation

∆u = e2u, u : D→ R.

It has a unique maximal solution umax = log λD which tends to

infinity as |z | → 1.

We are interested in solutions close to maximal in the sense that

lim sup
r→1

∫
|z|=r

(umax − u)dθ <∞.



Embedding into the space of measures

For each 0 < r < 1, we may view

(umax − u)dθ

as a positive measure on the circle of radius r .

Subharmonicity guarantees the existence of a weak limit as r → 1,

which we denote µ[u].

It turns out that the measure µ uniquely determines the solution u.

Thus, the question becomes: which measures occur?



Constructible measures

Theorem. (I, 2017) Any measure µ on the unit circle can be

uniquely decomposed into a constructible part and an invisible part:

µ = µcon + µinv.

In fact, uµcon is the minimal solution which exceeds the

subsolution umax − Pµ (Poisson extension).

Remark. The above theorem holds for other PDEs such as

∆u = |u|q−1u, q > 1, any smooth bounded domain, and is valid in

higher dimensions.



Cullen’s Theorem

Theorem. (M. Cullen, 1971) If a measure ν is supported on a

Beurling-Carleson set, then S ′ν ∈ N .

In particular,

u = log
2|S ′ν |

1− |Sν |2
is nearly-maximal,

i.e. ν is constructible.

From my work, it follows that Cullen’s theorem is essentially sharp:

if S ′µ ∈ N , then µ lives on a countable union of Beurling-Carleson

sets. Artur Nicolau gave an elementary proof of this fact.



Roberts’ decompositions

Claim. If ωµ(t) ≤ c · t log(1/t), then µ is invisible.

[ The modulus of continuity ωµ(t) = supI⊂S1 µ(I ), with the

supremum taken over all intervals of length t. ]

Theorem. (J. Roberts, 1979) Suppose µ does not charge

Beurling-Carleson sets. Given a real number c > 0 and integer

j0 ≥ 1, µ can be expressed as a countable sum

µ =
∞∑
j=1

µj ,

where

ωµj (1/nj) ≤
c

nj
· log nj , nj := 22

j+j0 .
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On L1 bounded solutions

Consider the differential equation

∆u = |u|q−1u, u : B→ R, q > 1,

where B is the unit ball in RN . We say that u is an L1 bounded

solution if

lim sup
r→1

∫
B
|u(rξ)|dσ <∞.

Taking the weak limit of u(rξ) dσ as r → 1, one obtains an

embedding of L1 bounded solutions into M(∂B).

Question. Which measures occur (are constructible)?



On L1 bounded solutions

Theorem. (A. Gmira & L. Véron, 1991) In the subcritical case,

q < qc = N+1
N−1 , all measures are constructible.

Theorem. In the supercritical case, q ≥ qc , a measure is

constructible iff it is diffuse with respect to capW 2/q,q′ .

This was proved by:

I J. F. Le Gall, q = 2 (1993),

I E. B. Dynkin & S. E. Kuznestov, qc ≤ q ≤ 2 (1996),

I M. Marcus & L. Véron, q > 2 (1998).



Stable topology on inner functions

Endow J /AutD with the stable topology where Fn → F if

I The convergence is uniform on compact subsets of the disk,

I The Nevanlinna splitting is stable in the limit:

InnF ′n → InnF ′, OutF ′n → OutF ′.

Theorem. (I, 2018) This happens if and only if the “critical

structures” of the Fn are uniformly concentrated on Korenblum

stars.
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Critical structures of inner functions

Consider the weighted Bergman space A2
1(D) which consists of all

holomorphic functions on the unit disk satisfying the norm

boundedness condition

‖f ‖A2
1

=

(∫
D
|f (z)|2 · (1− |z |)|dz |2

)1/2

<∞.

Theorem. (D. Kraus, 2007) Critical sets of inner functions = Zero

sets of the weighted Bergman space A2
1.

It therefore makes sense to seek a bijection between Inn /AutD and

certain invariant subspaces of A2
1.



Invariant subspaces of Bergman spaces

Conjecture. Inn /AutD ∼= {zero-based subspaces}.

A subspace is zero-based if consists of functions which vanish on a

prescribed set of points.

We say that Xn → X if any x ∈ X can be obtained as a limit of a

converging sequence of xn ∈ Xn and visa versa.

Theorem. (I, 2018) The collection of z-invariant subspaces of A2
1

which are generated by a single inner function is naturally

homeomorphic to J /AutD.



Thank you for your attention!


