Describing Blaschke products by their critical points

Oleg Ivrii

July 2-6, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite Blaschke Products

A finite Blaschke product of degree $d \ge 1$ is an analytic function from $\mathbb{D} \to \mathbb{D}$ of the form

$$F(z) = e^{i\psi} \prod_{i=1}^d \frac{z-a_i}{1-\overline{a_i}z}, \qquad a_i \in \mathbb{D}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite Blaschke Products

A finite Blaschke product of degree $d \ge 1$ is an analytic function from $\mathbb{D} \to \mathbb{D}$ of the form

$${\sf F}(z)=e^{i\psi}\prod_{i=1}^drac{z-{\sf a}_i}{1-\overline{{\sf a}_i}z},\qquad {\sf a}_i\in\mathbb{D}.$$

Theorem. (M. Heins, 1962) Given a set C of d - 1 points in the unit disk, there exists a unique Blaschke product of degree d with critical set C.

Finite Blaschke Products

A finite Blaschke product of degree $d \ge 1$ is an analytic function from $\mathbb{D} \to \mathbb{D}$ of the form

$${\sf F}(z)=e^{i\psi}\prod_{i=1}^drac{z-{\sf a}_i}{1-\overline{{\sf a}_i}z},\qquad {\sf a}_i\in\mathbb{D}.$$

Theorem. (M. Heins, 1962) Given a set C of d - 1 points in the unit disk, there exists a unique Blaschke product of degree d with critical set C.

[Here, unique = unique up to post-composition with a Möbius transformation in Aut(\mathbb{D}).]

Inner functions

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial limit

 $\lim_{r\to 1} F(re^{i\theta})$

exists and is unimodular (has absolute value 1).

We will denote the space of all inner function by Inn.

Inner functions

An inner function is a holomorphic self-map of \mathbb{D} such that for almost every $\theta \in [0, 2\pi)$, the radial limit

 $\lim_{r\to 1} F(re^{i\theta})$

exists and is unimodular (has absolute value 1).

We will denote the space of all inner function by Inn.

Different inner functions can have the same critical set. For example, $F_1(z) = z$ and $F_2(z) = \exp(\frac{z+1}{z-1})$ have no critical points.

An inner function can be represented as a (possibly infinite) Blaschke product \times singular inner function:

$$B = e^{i\psi} \prod_{i} -\frac{\overline{a_{i}}}{|a_{i}|} \cdot \frac{z - a_{i}}{1 - \overline{a_{i}}z}, \quad a_{i} \in \mathbb{D}, \quad \sum(1 - |a_{i}|) < \infty.$$
$$S = \exp\left(-\int_{\mathbb{S}^{1}} \frac{\zeta + z}{\zeta - z} d\sigma_{\zeta}\right), \quad \sigma \perp m, \quad \sigma \ge 0.$$

Here, B records the zero set, while S records the boundary zero structure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Inner functions of finite entropy

We will also be concerned with the subclass \mathscr{J} of inner functions whose derivative lies in the Nevanlinna class:

$$\sup_{0< r<1} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |F'(re^{i\theta})| d\theta < \infty.$$

In 1974, P. Ahern and D. Clark showed that F' admits a BSO decomposition, allowing us to define Inn F' := BS, where B records the critical set of F and S records the boundary critical structure.

Question. (K. Dyakonov) To what extent is an inner function in *I* determined by its critical structure? What are the possible critical structures of inner functions?

Question. (K. Dyakonov) To what extent is an inner function in \mathscr{J} determined by its critical structure? What are the possible critical structures of inner functions?

Theorem. (K. Dyakonov, 2013) $F \in Aut(\mathbb{D}) \iff Inn F' = 1$.

Question. (K. Dyakonov) To what extent is an inner function in \mathscr{J} determined by its critical structure? What are the possible critical structures of inner functions?

Theorem. (K. Dyakonov, 2013) $F \in Aut(\mathbb{D}) \iff Inn F' = 1$.

Theorem. (D. Kraus, 2007) $F \in MBP \cap \mathscr{J} \iff Inn F' \in BP$.

Theorem. (K. Dyakonov, 2013) $F \in Aut(\mathbb{D}) \iff Inn F' = 1$. Theorem. (D. Kraus, 2007) $F \in MBP \cap \mathscr{J} \iff Inn F' \in BP$. Theorem. (I, 2017) The map

$$\mathscr{J} / \operatorname{\mathsf{Aut}}(\mathbb{D}) o \operatorname{\mathsf{Inn}} / \mathbb{S}^1, \qquad F o \operatorname{\mathsf{Inn}} F'$$

is injective

Question. (K. Dyakonov) To what extent is an inner function in \mathscr{J} determined by its critical structure? What are the possible critical structures of inner functions?

Theorem. (K. Dyakonov, 2013) $F \in Aut(\mathbb{D}) \iff Inn F' = 1$. Theorem. (D. Kraus, 2007) $F \in MBP \cap \mathscr{J} \iff Inn F' \in BP$. Theorem. (I, 2017) The map

$$\mathscr{J} / \operatorname{\mathsf{Aut}}(\mathbb{D}) o \operatorname{\mathsf{Inn}} / \mathbb{S}^1, \qquad F o \operatorname{\mathsf{Inn}} F'$$

is injective but NOT surjective.

Theorem. (K. Dyakonov, 2013) $F \in Aut(\mathbb{D}) \iff Inn F' = 1$. Theorem. (D. Kraus, 2007) $F \in MBP \cap \mathscr{J} \iff Inn F' \in BP$. Theorem. (I, 2017) The map

$$\mathscr{J}/\operatorname{\mathsf{Aut}}(\mathbb{D}) o\operatorname{\mathsf{Inn}}/\operatorname{\mathbb{S}}^1,\qquad F o\operatorname{\mathsf{Inn}} F'$$

is injective but NOT surjective. The image consists of all inner functions of the form BS_{μ} where B is a Blaschke product and μ is a measure supported on a countable union of Beurling-Carleson sets.

Beurling-Carleson sets

Definition. A Beurling-Carleson set E is a closed subset of the unit circle which has measure 0 such that

$$\sum |I_j| \cdot \log rac{1}{|I_j|} < \infty,$$

where $\{I_j\}$ are the complementary intervals.

[Measures which do not charge Beurling-Carleson sets also occur in the description of cyclic functions in Bergman spaces given indepedently by Korenblum (1977) and Roberts (1979).]

Background on conformal metrics

The curvature of a conformal metric $\lambda(z)|dz|$ is given by

$$k_{\lambda} = -rac{\Delta\log\lambda}{\lambda^2}.$$

Examples. The hyperbolic metric

$$\lambda_{\mathbb{D}} = \frac{2|dz|}{1-|z|^2}$$

has curvature $\equiv -1$,

while the Euclidean metric |dz| has curvature $\equiv 0$.

Since curvature is a conformal invariant, if $F : \mathbb{D} \to \mathbb{D}$ is a holomorphic map then

$$\lambda_{\mathsf{F}} = \mathsf{F}^* \lambda_{\mathbb{D}} = \frac{2|\mathsf{F}'|}{1 - |\mathsf{F}|^2}$$

is a conformal metric of curvature $\equiv -1$ on $\mathbb{D} \setminus \operatorname{crit}(F)$,

Since curvature is a conformal invariant, if $F : \mathbb{D} \to \mathbb{D}$ is a holomorphic map then

$$\lambda_{m{F}}\,=\,m{F}^*\lambda_{\mathbb{D}}\,=\,rac{2|m{F}'|}{1-|m{F}|^2}$$

is a conformal metric of curvature $\equiv -1$ on $\mathbb{D} \setminus \operatorname{crit}(F)$, but is only a pseudometric on \mathbb{D} .

Since curvature is a conformal invariant, if $F : \mathbb{D} \to \mathbb{D}$ is a holomorphic map then

$$\lambda_{m{F}}\,=\,m{F}^*\lambda_{\mathbb{D}}\,=\,rac{2|m{F}'|}{1-|m{F}|^2}$$

is a conformal metric of curvature $\equiv -1$ on $\mathbb{D} \setminus \operatorname{crit}(F)$, but is only a pseudometric on \mathbb{D} . Its logarithm $u_F = \log \lambda_F$ satisfies

$$\Delta u_F = e^{2u_F} + 2\pi \sum_{c_i \in \operatorname{crit}(F)} \delta_{c_i}.$$

Since curvature is a conformal invariant, if $F : \mathbb{D} \to \mathbb{D}$ is a holomorphic map then

$$\lambda_{m{F}}\,=\,m{F}^*\lambda_{\mathbb{D}}\,=\,rac{2|m{F}'|}{1-|m{F}|^2}$$

is a conformal metric of curvature $\equiv -1$ on $\mathbb{D} \setminus \operatorname{crit}(F)$, but is only a pseudometric on \mathbb{D} . Its logarithm $u_F = \log \lambda_F$ satisfies

$$\Delta u_F = e^{2u_F} + 2\pi \sum_{c_i \in \operatorname{crit}(F)} \delta_{c_i}.$$

Liouville observed that there is a natural bijection between $Hol(\mathbb{D}, \mathbb{D})/Aut \mathbb{D}$ and pseudometrics of constant curvature -1 with integral singularities.

Nearly-maximal solutions

Consider the Gauss curvature equation

$$\Delta u = e^{2u}, \qquad u : \mathbb{D} \to \mathbb{R}.$$

It has a unique maximal solution $u_{\max} = \log \lambda_{\mathbb{D}}$ which tends to infinity as $|z| \to 1$.

We are interested in solutions close to maximal in the sense that

$$\limsup_{r\to 1}\int_{|z|=r}(u_{\max}-u)d\theta<\infty.$$

Embedding into the space of measures

For each 0 < r < 1, we may view

 $(u_{\max} - u)d\theta$

as a positive measure on the circle of radius r.

Subharmonicity guarantees the existence of a weak limit as $r \to 1$, which we denote $\mu[u]$.

It turns out that the measure μ uniquely determines the solution u. Thus, the question becomes: which measures occur?

Theorem. (I, 2017) Any measure μ on the unit circle can be uniquely decomposed into a constructible part and an invisible part:

 $\mu = \mu_{\rm con} + \mu_{\rm inv}.$

In fact, $u_{\mu_{con}}$ is the **minimal solution** which exceeds the subsolution $u_{max} - P_{\mu}$ (Poisson extension).

Remark. The above theorem holds for other PDEs such as $\Delta u = |u|^{q-1}u$, q > 1, any smooth bounded domain, and is valid in higher dimensions.

Cullen's Theorem

Theorem. (M. Cullen, 1971) If a measure ν is supported on a Beurling-Carleson set, then $S'_{\nu} \in \mathcal{N}$.

In particular,

$$u = \log rac{2|S_{
u}'|}{1-|S_{
u}|^2}$$
 is nearly-maximal,

i.e. ν is constructible.

From my work, it follows that Cullen's theorem is essentially sharp: if $S'_{\mu} \in \mathcal{N}$, then μ lives on a countable union of Beurling-Carleson sets. Artur Nicolau gave an elementary proof of this fact.

Roberts' decompositions

Claim. If $\omega_{\mu}(t) \leq c \cdot t \log(1/t)$, then μ is invisible. [The modulus of continuity $\omega_{\mu}(t) = \sup_{I \subset \mathbb{S}^{1}} \mu(I)$, with the supremum taken over all intervals of length t.]

Roberts' decompositions

Claim. If $\omega_{\mu}(t) \leq c \cdot t \log(1/t)$, then μ is invisible. [The modulus of continuity $\omega_{\mu}(t) = \sup_{I \subset \mathbb{S}^{1}} \mu(I)$, with the supremum taken over all intervals of length t.]

Theorem. (J. Roberts, 1979) Suppose μ does not charge Beurling-Carleson sets. Given a real number c > 0 and integer $j_0 \ge 1$, μ can be expressed as a countable sum

$$\mu = \sum_{j=1}^{\infty} \mu_j,$$

where

$$\omega_{\mu_j}(1/n_j) \leq rac{c}{n_j} \cdot \log n_j, \qquad n_j := 2^{2^{j+j_0}}$$

On L^1 bounded solutions

Consider the differential equation

$$\Delta u = |u|^{q-1}u, \qquad u: \mathbb{B} \to \mathbb{R}, \quad q > 1,$$

where \mathbb{B} is the unit ball in \mathbb{R}^N . We say that u is an L^1 bounded solution if

$$\limsup_{r\to 1}\int_{\mathbb{B}}|u(r\xi)|d\sigma<\infty.$$

Taking the weak limit of $u(r\xi) d\sigma$ as $r \to 1$, one obtains an embedding of L^1 bounded solutions into $\mathcal{M}(\partial \mathbb{B})$.

Question. Which measures occur (are constructible)?

On L^1 bounded solutions

Theorem. (A. Gmira & L. Véron, 1991) In the subcritical case, $q < q_c = \frac{N+1}{N-1}$, all measures are constructible.

Theorem. In the supercritical case, $q \ge q_c$, a measure is constructible iff it is diffuse with respect to $cap_{W^{2/q,q'}}$.

This was proved by:

- J. F. Le Gall, q = 2 (1993),
- E. B. Dynkin & S. E. Kuznestov, $q_c \le q \le 2$ (1996),

M. Marcus & L. Véron, q > 2 (1998).

Stable topology on inner functions

Endow $\mathscr{J} / \operatorname{Aut} \mathbb{D}$ with the stable topology where $F_n \to F$ if

- The convergence is uniform on compact subsets of the disk,
- The Nevanlinna splitting is stable in the limit:

$$\operatorname{Inn} F'_n \to \operatorname{Inn} F', \quad \operatorname{Out} F'_n \to \operatorname{Out} F'.$$

・ロト・日本・モート モー うへぐ

Stable topology on inner functions

Endow $\mathscr{J} / \operatorname{Aut} \mathbb{D}$ with the stable topology where $F_n \to F$ if

- The convergence is uniform on compact subsets of the disk,
- The Nevanlinna splitting is stable in the limit:

$$\operatorname{Inn} F'_n \to \operatorname{Inn} F', \qquad \operatorname{Out} F'_n \to \operatorname{Out} F'.$$

Theorem. (I, 2018) This happens if and only if the "critical structures" of the F_n are uniformly concentrated on Korenblum stars.

Critical structures of inner functions

Consider the weighted Bergman space $A_1^2(\mathbb{D})$ which consists of all holomorphic functions on the unit disk satisfying the norm boundedness condition

$$\|f\|_{\mathcal{A}^2_1} = \left(\int_{\mathbb{D}} |f(z)|^2 \cdot (1-|z|) |dz|^2
ight)^{1/2} < \infty.$$

Theorem. (D. Kraus, 2007) Critical sets of inner functions = Zero sets of the weighted Bergman space A_1^2 .

It therefore makes sense to seek a bijection between Inn / Aut \mathbb{D} and certain invariant subspaces of A_1^2 .

Invariant subspaces of Bergman spaces

Conjecture. Inn / Aut $\mathbb{D} \cong \overline{\{\text{zero-based subspaces}\}}$.

A subspace is zero-based if consists of functions which vanish on a prescribed set of points.

We say that $X_n \to X$ if any $x \in X$ can be obtained as a limit of a converging sequence of $x_n \in X_n$ and visa versa.

Theorem. (I, 2018) The collection of *z*-invariant subspaces of A_1^2 which are generated by a single inner function is naturally homeomorphic to $\mathcal{J} / \operatorname{Aut} \mathbb{D}$.

Thank you for your attention!