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Solutions are entire functions

The solutions of the linear differential equation

f (n) + an−1(z)f (n−1) + · · ·+ a1(z)f ′ + a0(z)f = 0 (1)

with entire coefficients a0(z), . . . , an−1(z) are entire.

To avoid ambiguity, we assume that a0(z) 6≡ 0.
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Theorems by Wittich and Frei

Wittich’s theorem. The coefficients a0(z), . . ., an−1(z) of (1)
are polynomials if and only if all solutions of (1) are of finite order.

Frei’s theorem. Suppose that at least one coefficient in (1) is
transcendental, and that aj(z) is the last transcendental
coefficient, that is, the coefficients aj+1(z), . . . , an−1(z), if
applicable, are polynomials. Then (1) possesses at most j linearly
independent solutions of finite order.
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Sharpness of Frei’s theorem

Example. The functions

f1(z) = ez + z

f2(z) = ez − 1

f3(z) = z + 1

are solutions of

f ′′′ +
(
z − 1 + e−z

)
f ′′ − (z + 1)f ′ + f = 0,

and any two of them are linearly independent. This illustrates the
sharpness of Frei’s theorem in the case n = 3.
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Frei’s example in the second order case

The equation
f ′′ + e−z f ′ + αf = 0

where α 6= 0 is a constant, has a subnormal solution if and only if
α = −m2 for a positive integer m. The subnormal solution is a
polynomial of degree m in ez , that is

f (z) = C0 + C1e
z + · · ·+ Cme

mz ,

where C0, . . . ,Cm ∈ C with Cm 6= 0. In fact, Cj 6= 0 for 0 ≤ j ≤ m
holds, but requires a short proof.
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Examples of third order equations

The function f (z) = e−z + z − 1 satisfies

f ′′′ + (ez − z)f ′′ − zf ′ + f = 0.

The function f (z) = ez − 1 satisfies

f ′′′ − 2f ′′ + e−z f ′ + f = 0.

The function f (z) = 16− 27e−2z + 27e−3z satisfies

f ′′′ + (1/9)(9 + 9ez + 4e2z)f ′′ − 5f ′ + 3f = 0.
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Examples of solutions of order two

The function f (z) = exp
(
z2
)
− 1 solves the following two

equations:

f ′′′ +
(
exp

(
−z2

)
− 2z − 1

)
f ′′ − 4f ′ +

(
4z2 + 2

)
f = 0,

f ′′′ − 2zf ′′ − (2 + 2e−z
2
)f ′ − 4zf = 0.

The function f (z) = exp
(
z2/2 + z

)
+ z + 1 is a solution of

f ′′′ +
(
exp

(
−z2/2− z

)
− z − 1

)
f ′′ − f ′ − (z + 1)f = 0.
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Examples of higher order equations

If P(z) and Q(z) are any polynomials, then f (z) = e−z + 1
solves

f (5)+P(z)f (4)+(1+P(z))f ′′′+Q(z)f ′′+(Q(z)+2ez)f ′+2f = 0.

Let n be an even number and µ be an integer such that
0 < µ < n. If aµ(z) = e−z , aj = (−1)j for µ < j < n and
aj = (−1)j+1 for 0 ≤ j < µ, then f (z) = ez + 1 solves the
equation

f (n) + an−1f
(n−1) + · · ·+ e−z f (µ) + · · ·+ a1f

′ + a0f = 0.
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Standard form and normalized form

An exp poly is an entire function of the form

f (z) = P1(z)eQ1(z) + · · ·+ Pk(z)eQk (z),

where Pj ’s and Qj ’s are polynomials in z .

The constant q = max{deg(Qj)} is the order of f . If q = 1,
then f is called an exponential sum.

The normalized form of f is

f (z) = H0(z) + H1(z)ew1zq + · · ·+ Hm(z)ewmzq ,

where Hj(z)’s are either exp polys of order < q or ordinary
polys in z , the coefficients wj are pairwise distinct, and m ≤ k .
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Dual exponential polynomials

Suppose that f is an exp poly in the normalized form. If the
nonzero conjugate leading coefficients w1, . . . ,wm of f all lie
on some ray arg(z) = θ, then f is called a simple exp poly.

If g is another simple exponential polynomial such that
ρ(g) = ρ(f ), where the non-zero conjugate leading
coefficients of g all lie on the opposite ray arg(z) = θ + π,
then f and g are called dual exp polys.

For example, f (z) = ez + e2z + e5z and g(z) = 1 + e−4z are
dual exp polys.
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Second order case

Theorem

Suppose that f is an exp poly solution of

f ′′ + A(z)f ′ + B(z)f = 0,

where A(z) and B(z) are exp polys satisfying ρ(B) < ρ(A). Then
f and A(z) are dual exp polys of order q ∈ N.

In particular, if ρ(Af ′) < q, then q = 1 and

f (z) = c + βeαz , A(z) = γe−αz and B(z) = µ,

where α, β, γ, µ ∈ C \ {0}.
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General order case

Theorem

Suppose that f is an exp poly solution of

f (n) + an−1(z)f (n−1) + · · ·+ a1(z)f ′ + a0(z)f = 0,

where aj(z) are exp polys such that for precisely one index
µ ∈ {1, · · · , n − 1}, we have ρ(aj) < ρ(aµ) for all j 6= µ. Then
either f is a polynomial of degree ≤ µ− 1 or f and aµ(z) are dual
exp polys of order q ∈ N.

In particular, if ρ(aµf
(µ)) < q and aj(z) are polynomials for j 6= µ,

then

f (z) = S(z) + Q(z)eP(z) and aµ(z) = R(z)e−P(z),

where P(z),Q(z),R(z),S(z) are polynomials and deg(P) = q.
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Finite order solutions

Theorem

Suppose that f is a finite order solution of

f (n) + an−1(z)f (n−1) + · · ·+ a1(z)f ′ + a0(z)f = 0,

where aµ(z) is a transcendental exp poly for precisely one index
µ ∈ {1, · · · , n− 1}, while aj(z) (j 6= µ) are poly’s. Then either f is
a poly of degree ≤ µ− 1 or ρ(f ) ≥ ρ(aµ). In addition:

(a) If |aµ(z)| blows up exponentially in a sector S1, then f has at
most a polynomial growth in S1.

(b) If |aµ(z)| decays to zero in a sector S2, then

log+ |f (z)| = O

(
|z |

1+maxj 6=µ

{
deg(aj )

n−j

})
, z ∈ S2.
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Tools for proofs

General growth estimates for solutions

Phragmén-Lindelöf principle

Estimates for log derivatives and inverse log derivatives

Steinmetz’ result for quotients of exp polynomials

Careful treatment of indicator diagrams

Borel’s lemma
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