Order isomorphisms of countable dense real sets which are universal entire functions (preliminary report)

Paul Gauthier (extinguished professor)

New Developments in
Complex Analysis and Function Theory
Heraklion, 2-6 July 2018

ORDER

An order is a way of giving meaning to an expression of the form

$$
x<y
$$

Examples: On people,

Height, weight, age and income are orders.

Nationality, religion, color and gender are not. orders.

ORDER ISOMORPHISMS

Every well-ordered set is order-isomorphic to a unique ordinal. Note: \mathbb{Q} not well-ordered.

Definition. An ordered set is dense, if between every two elements, there is a third. Note: \mathbb{Q} is dense.

Cantor 1895

If A and B are countable dense ordered sets without first or last elements, then there is an order isomorphism

$$
f: A \rightarrow B .
$$

Corollary

If A and B are countable dense subsets of \mathbb{R}, then there is an order homeomorphism

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { with } \quad f(A)=B
$$

Corollary

If A and B are countable dense subsets of \mathbb{R}, then there is an order homeomorphism

$$
f: \mathbb{R} \rightarrow \mathbb{R} \text { with } \quad f(A)=B
$$

Corollary (suggested by Solynin talk)

If A and B are countable dense subsets of the circle \mathbb{T}, then there is an order homeomorphism

$$
f: \mathbb{T} \rightarrow \mathbb{T} \text { with } \quad f(A)=B
$$

Corollary to Cantor 1895

If A and B are countable dense subsets of \mathbb{R}, then there is an order homeomorphism

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { with } \quad f(A)=B
$$

Stäckel 1895

If A and B are countable dense subsets of \mathbb{R}, then there is an entire function f

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { with } \quad f(A) \subset B
$$

Erdös 1957
A, B countable dense, \exists entire function f with $f(A)=B$?
Yes
$A, B \subset \mathbb{C}$, Maurer 1967. $A, B \subset \mathbb{R}$, Barth-Schneider 1970.

Franklin 1925
If A and B are countable dense subsets of \mathbb{R}, then there is an order bianalytic mapping

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad \text { with } \quad f(A)=B
$$

Corollary to Cantor 1895

If A and B are countable dense subsets of \mathbb{R}, then there is an order homeomorphism

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { with } \quad f(A)=B
$$

Corollary (suggested by Solynin talk)

If A and B are countable dense subsets of \mathbb{T}, then there is an order homeomorphism

$$
f: \mathbb{T} \rightarrow \mathbb{T} \quad \text { with } \quad f(A)=B
$$

Franklin 1925
$A, B \subset \mathbb{R}$ countable dense. Then \exists order bianalytic

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad \text { with } \quad f(A)=B
$$

Question (suggested by Solynin talk)
$A, B \subset \mathbb{T}$ countable dense. Is there is a diffeomorphism

$$
f: \mathbb{T} \rightarrow \mathbb{T} \quad \text { with } \quad f(A)=B
$$

Franklin 1925 (again)
For A and B countable dense subsets of \mathbb{R}, there exists a bianalytic map $f: \mathbb{R} \rightarrow f(\mathbb{R}) \subset \mathbb{R}$, such that:
f restricts to a bijection of A onto B (hence, $f(\mathbb{R})=\mathbb{R}$).
Morayne 1987
If A and B are countable dense subsets of \mathbb{C}^{n} (respectively \mathbb{R}^{n}), $n>1$, there is a measure preserving biholomorphic mapping of \mathbb{C}^{n} (respectively bianalytic mapping of \mathbb{R}^{n}) which maps A to B.

Rosay-Rudin 1988

Same result for \mathbb{C}^{n} only.

Remarks

Franklin's proof invokes the statement that the uniform limit of analytic functions is analytic, which is false (in view of Weierstrass approximation theorem, for example).

For \mathbb{C}^{1}, Morayne, Rosay-Rudin results are false.
For $n=1$, Morayne conclusion \Rightarrow Franklin, but Morayne proof fails for $n=1$.

Theorem. For A and B countable dense subsets of \mathbb{R}, there exists an entire function f of finite order such that: $f(\mathbb{R})=\mathbb{R} ; f^{\prime}(x)>0$, for $x \in \mathbb{R}$ and $\left.f\right|_{A}: A \rightarrow B$ is an order isomorphism .

Proof. $A=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} ; B=\left\{\beta_{1}, \beta_{2}, \ldots\right\}$.
$f(z)=\lim _{n \rightarrow \infty} f_{n}(z)=\lim _{n \rightarrow \infty}\left(z+\sum_{j=1}^{n} \lambda_{j} h_{j}(z)\right)=z+\sum_{j=1}^{\infty} \lambda_{j} h_{j}(z)$,
$h_{1}=1 ; \quad$ and $\quad h_{n}(z)=e^{-z^{2}} \prod_{k=1}^{n-1}\left(z-\alpha_{k}\right)$, for $n=2,3, \ldots$, λ_{j} 's small and real $\Rightarrow f(\mathbb{R}) \subset \mathbb{R}$.
λ_{j} 's small $\Rightarrow f$ entire of finite order and $f^{\prime}(x)>0, \forall x \in \mathbb{R}$,

$$
h_{n}(z)=0, \quad \text { iff } \quad z=\alpha_{k}, k=2, \ldots, n-1 .
$$

Choose λ_{n} so $f_{n}\left(\alpha_{n}\right)=\beta_{n}$.

I OVERSIMPLIFIED

Choose enumerations $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots,\right\}$. The sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are rearrangements of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ chosen recursively.

First, choose $\alpha_{1}, \lambda_{1}, \beta_{1}, \beta_{2} \neq \beta_{1}$, so $f_{1}\left(\alpha_{1}\right)=\beta_{1}$.

Suppose we have respectively distinct

$$
\begin{gathered}
\alpha_{1}, \ldots, \alpha_{2 n-1} ; \quad \lambda_{1}, \ldots, \lambda_{2 n-1} ; \quad \beta_{1}, \ldots, \beta_{2 n} \\
\alpha_{2 k-1}=\left(\text { first } a_{i}\right) \in A \backslash\left\{\alpha_{j}: j<2 k-1\right\}, \quad k=1, \ldots, n \\
\beta_{2 k}=\left(\text { first } b_{i}\right) \in B \backslash\left\{\beta_{j}: j<2 k\right\}, \quad k=1, \ldots, n \\
f\left(\alpha_{j}\right)=\beta_{j}, \quad j=1, \ldots, 2 n-1
\end{gathered}
$$

Choose
$\alpha_{2 n}, \lambda_{2 n}$,
$\beta_{2 n+1}, \alpha_{2 n+1}, \lambda_{2 n+1}$,
$\beta_{2(n+1)}$
with

$$
f_{2 n}\left(\alpha_{2 n}\right)=\beta_{2 n} \quad f_{2 n+1}\left(\alpha_{2 n+1}\right)=\beta_{2 n+1}
$$

α_{1}	λ_{1}	β_{1}
-	-	β_{2}
-	-	-
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
.	\cdot	.

$$
\begin{array}{lll}
\alpha_{2 n-1} & \lambda_{2 n-1} & \beta_{2 n-1} \\
{\left[\alpha_{2 n}\right.} & \left.\lambda_{2 n}\right] & \beta_{2 n} \\
\alpha_{2 n+1} & {\left[\begin{array}{lll}
\lambda_{2 n+1} & \left.\beta_{2 n+1}\right] \\
- & - & \beta_{2(n+1)}
\end{array}\right.}
\end{array}
$$

How to find $\left[\alpha_{2 n}, \lambda_{2 n}\right.$] such that

$$
\begin{gathered}
\beta_{2 n}=f_{2 n}\left(\alpha_{2 n}\right)=\alpha_{2 n}+\sum_{j=1}^{2 n-1} \lambda_{j} h_{j}\left(\alpha_{2 n}\right)+\lambda_{2 n} h_{2 n}\left(\alpha_{2 n}\right)= \\
f_{2 n-1}\left(\alpha_{2 n}\right)+\lambda_{2 n} h_{2 n}\left(\alpha_{2 n}\right)
\end{gathered}
$$

Put

$$
g(x, y)=f_{2 n-1}(x)+y h_{2 n}(x)
$$

Fix y_{n} small. Show $g\left(\cdot, y_{n}\right): \mathbb{R} \rightarrow \mathbb{R}$ surjective. So, $\exists \alpha$ with $g\left(\alpha, y_{n}\right)=\beta_{2 n}$. Implicit function theorem implies, there is $\left(\alpha_{2 n}, \lambda_{2 n}\right)$ near $\left(\alpha, y_{n}\right)$, with $g\left(\alpha_{2 n}, \lambda_{2 n}\right)=\beta_{2 n}$ and $\alpha_{2 n} \in A$.

Universal Functions

Birkhoff 1925 There exists an entire function f which is universal. That is, for each entire function g, there is a sequence a_{n}, such that $f\left(\cdot+a_{n}\right) \rightarrow g$.

Most entire functions are universal.

No example is known.

Voronin Universality Theorem 1975
Zero-free holomorphic functions in strip $1 / 2<\mathfrak{R} z<1$ can be approximated by translates of the Riemann zeta-function: $\zeta\left(z+i t_{n}\right), t_{n} \rightarrow \infty$.

If the zero-free hyposthesis is superfluous, the Riemann Hypothesis fails.

Bagchi 1981 The following are equivalent:
i) $\exists t_{n} \rightarrow \infty, \underline{d}\left\{t_{n}\right\}>0, \zeta\left(\cdot+i t_{n}\right) \rightarrow \zeta$ in strip;
ii) the Riemann Hypothesis is true.

Approximation on Closed Sets

A chaplet is a locally finite sequence of disjoint closed discs $\bar{D}_{1}, \bar{D}_{2}, \ldots$.

Theorem Given a chaplet $\left\{\bar{D}_{n}\right\}$, a sequence of positive numbers $\left\{\epsilon_{n}\right\}$ and a sequence of functions
$f_{n} \in A\left(\bar{D}_{n}\right)=C\left(\bar{D}_{n}\right) \cap \operatorname{Hol}\left(D_{n}\right)$, there exists an entire function g, such that, for $n=1,2, \ldots$,

$$
\left|g(z)-f_{n}(z)\right|<\epsilon_{n}, \quad \text { for all } \quad z \in \bar{D}_{n} .
$$

Application. The existence of a universal entire function (Birkhoff's Theorem).

Approximation by Functions of Finite Order

With the help of a (not the) theorem of Arakelian on approximation by entire functions of finite order, we can prove:

Theorem. For an arbitrary sequence $\epsilon_{k}>0$, there exists a sequence $D_{k}=D\left(a_{k}, k\right)$ such that for every sequence $f_{k} \in \bar{D}_{k}$, with $\left|f_{k} \epsilon_{k}\right|<1$, there exists an entire function f of finite order, such that

$$
\left|f(z)-f_{k}(z)\right|<\epsilon_{k}, \quad \text { for all } \quad z \in \bar{D}_{k} .
$$

Corollary. For sequences $\mathbb{D}_{n}=(|z|<n), \varphi_{n} \in A\left(\overline{\mathbb{D}_{n}}\right)$ and $\epsilon_{n}>0$, there exists a subsequence $a_{k_{n}}$ and an entire function f of finite order, such that,
setting $f_{n}(z)=\varphi_{n}\left(z-a_{k_{n}}\right)$,

$$
\left|f\left(z+a_{k_{n}}\right)-\varphi_{n}(z)\right|<\epsilon_{k_{n}}, \quad \text { for all } \quad z \in \overline{\mathbb{D}}_{n} .
$$

Application (Arakelian). There exist universal entire functions of finite order.

Given: countable dense real sets A and B,

Theorem (again)
There exists an entire function f of finite order :
f is an order isomorphism of A onto $B ; f^{\prime}(x)>0, x \in \mathbb{R}$;

Can impose other conditions on an order isomorphism f.

Given: increasing sequences a_{n} and b_{n}, without limit points,

Theorem (universal-interpolating)

There exists a universal entire function f :
f is an order isomorphism of A onto B;
$f^{\prime}(x)>0, x \in \mathbb{R}$; and $f\left(a_{n}\right)=b_{n}, n=1,2, \ldots$

Proof of universal-interpolating theorem .

Lemma. Suppose $\left\{\bar{D}_{n}\right\}$ a chaplet disjoint from $\mathbb{R} ;\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}, n=0, \pm 1, \pm 2, \ldots$, strictly increasing sequences of real numbers tending to ∞, as $n \rightarrow \infty$ and $\epsilon_{n}>0$. Then, for every sequence $g_{n} \in A\left(\bar{D}_{n}\right)$, there exists an entire function Φ, such that $\left|\Phi-g_{n}\right|<\epsilon_{n}$ on \bar{D}_{n}; Φ maps \mathbb{R} bijectively onto $\mathbb{R} ; \Phi^{\prime}>0$ on \mathbb{R} and $\Phi\left(a_{n}\right)=b_{n}, n=$ $0, \pm 1, \pm 2, \ldots$.

Lemma. Same hypotheses, there exists entire function H, such that $H_{D_{n}} \sim 0, H_{R} \sim 1, H_{R}^{\prime} \sim 0$

Proof of theorem. Replace

$$
f(z)=z+\sum_{j=1}^{\infty} \lambda_{j} e^{-z^{2}} \prod_{k=1}^{j-1}\left(z-\alpha_{k}\right)
$$

by

$$
f(z)=\Phi(z)+H(z) \sum_{j=1}^{\infty} \lambda_{j} e^{-\Phi^{2}(z)} \prod_{k=1}^{j-1}\left(\Phi(z)-\Phi\left(\alpha_{k}\right)\right) .
$$

Franklin 1925 (again)
For A and B countable dense subsets of \mathbb{R}, there exists a bianalytic map $f: \mathbb{R} \rightarrow \mathbb{R}$, such that:
f restricts to an order isomorphism of A onto B.
Morayne 1987
If A and B are countable dense subsets of \mathbb{C}^{n} (respectively \mathbb{R}^{n}), $n>1$, there is a measure preserving biholomorphic mapping of \mathbb{C}^{n} (respectively bianalytic mapping of \mathbb{R}^{n}) which maps A to B.

Rosay-Rudin 1988

Same result for \mathbb{C}^{n} only.

Remarks

1. ($n=1$, real case) Franklin's proof incorrect.
2. ($\mathrm{n}=1$, real case) The only measure preserving order isomorphisms of \mathbb{R} are translations $x \mapsto x+c$. The only possible image of a real set A is the real set $B=A+c$.
($\mathrm{n}=1$, complex case) Barth/Schneider 1972
If A and B are countable dense subsets of \mathbb{C}, there exists an entire function f, such that $f(z) \in B$ if and only if $z \in A$.

Paucity

Let \mathcal{E} denote the space of entire functions and \mathcal{E}_{R} denote the "real" entire functions, that is, the entire functions which map reals to reals.

Remark. \mathcal{E}_{R} is a closed nowhere dense subset of \mathcal{E}.

Let $\mathcal{E}_{\rightarrow}$ be the space of functions in \mathcal{E}_{R}, whose restrictions to the reals are non-decreasing.

Remark. $\mathcal{E}_{\rightarrow}$ is a closed nowhere dense subset of \mathcal{E}_{R}.

EFHARISTO!

