Order isomorphisms of countable dense real sets which are universal entire functions

(preliminary report)

Paul Gauthier (extinguished professor)

New Developments in Complex Analysis and Function Theory

Heraklion, 2-6 July 2018

ORDER

An order is a way of giving meaning to an expression of the form

x < y.

Examples: On people,

Height, weight, age and income are orders.

Nationality, religion, color and gender are not. orders.

ORDER ISOMORPHISMS

Every well-ordered set is order-isomorphic to a unique ordinal. Note: \mathbb{Q} not well-ordered.

Definition. An ordered set is **dense**, if between every two elements, there is a third. Note: \mathbb{Q} is dense.

Cantor 1895

If *A* and *B* are countable dense ordered sets without first or last elements, then there is an order isomorphism

 $f: A \rightarrow B.$

Corollary

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an order homeomorphism

 $f : \mathbb{R} \to \mathbb{R}$ with f(A) = B.

Corollary

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an order homeomorphism

 $f: \mathbb{R} \to \mathbb{R}$ with f(A) = B.

Corollary (suggested by Solynin talk)

If *A* and *B* are countable dense subsets of the circle \mathbb{T} , then there is an order homeomorphism

 $f: \mathbb{T} \to \mathbb{T}$ with f(A) = B.

Corollary to Cantor 1895

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an order homeomorphism

 $f: \mathbb{R} \to \mathbb{R}$ with f(A) = B.

Stäckel 1895

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an entire function *f*

 $f: \mathbb{R} \to \mathbb{R}$ with $f(A) \subset B$.

Erdös 1957

A, B countable dense, \exists entire function f with f(A) = B? Yes

 $A, B \subset \mathbb{C}$, Maurer 1967. $A, B \subset \mathbb{R}$, Barth-Schneider 1970.

Franklin 1925

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an order bianalytic mapping

 $f: \mathbb{R} \to \mathbb{R}$, with f(A) = B.

Corollary to Cantor 1895

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is an order homeomorphism

 $f: \mathbb{R} \to \mathbb{R}$ with f(A) = B.

Corollary (suggested by Solynin talk) If *A* and *B* are countable dense subsets of \mathbb{T} , then there is an order homeomorphism

 $f: \mathbb{T} \to \mathbb{T}$ with f(A) = B.

Franklin 1925

 $A, B \subset \mathbb{R}$ countable dense. Then \exists order bianalytic

 $f: \mathbb{R} \to \mathbb{R}$, with f(A) = B.

Question (suggested by Solynin talk)

 $A, B \subset \mathbb{T}$ countable dense. Is there is a diffeomorphism

$$f: \mathbb{T} \to \mathbb{T}$$
 with $f(A) = B$.

Franklin 1925 (again)

For *A* and *B* countable dense subsets of \mathbb{R} , there exists a bianalytic map $f : \mathbb{R} \to f(\mathbb{R}) \subset \mathbb{R}$, such that:

f restricts to a bijection of *A* onto *B* (hence, $f(\mathbb{R}) = \mathbb{R}$).

Morayne 1987

If *A* and *B* are countable dense subsets of \mathbb{C}^n (respectively \mathbb{R}^n), n > 1, there is a measure preserving biholomorphic mapping of \mathbb{C}^n (respectively bianalytic mapping of \mathbb{R}^n) which maps *A* to *B*.

Rosay-Rudin 1988 Same result for \mathbb{C}^n only.

Remarks

Franklin's proof invokes the statement that the uniform limit of analytic functions is analytic, which is false (in view of Weierstrass approximation theorem, for example).

For \mathbb{C}^1 , Morayne, Rosay-Rudin results are false. For n = 1, Morayne conclusion \Rightarrow Franklin, but Morayne proof fails for n = 1. **Theorem.** For *A* and *B* countable dense subsets of \mathbb{R} , there exists an entire function *f* of finite order such that: $f(\mathbb{R}) = \mathbb{R}; f'(x) > 0$, for $x \in \mathbb{R}$ and $f|_A : A \to B$ is an order isomorphism.

Proof.
$$A = \{\alpha_1, \alpha_2, ...\}; B = \{\beta_1, \beta_2, ...\}.$$

 $f(z) = \lim_{n \to \infty} f_n(z) = \lim_{n \to \infty} \left(z + \sum_{j=1}^n \lambda_j h_j(z) \right) = z + \sum_{j=1}^\infty \lambda_j h_j(z),$

$$h_1 = 1;$$
 and $h_n(z) = e^{-z^2} \prod_{k=1}^{n-1} (z - \alpha_k)$, for $n = 2, 3, ...,$

 λ_j 's small and real $\Rightarrow f(\mathbb{R}) \subset \mathbb{R}$. λ_j 's small $\Rightarrow f$ entire of finite order and $f'(x) > 0, \forall x \in \mathbb{R}$,

$$h_n(z) = 0$$
, iff $z = \alpha_k, k = 2, \dots, n-1$.

Choose λ_n so $f_n(\alpha_n) = \beta_n$.

I OVERSIMPLIFIED

Choose enumerations $A = \{a_1, a_2, ...\}$ and $B = \{b_1, b_2, ..., \}$. The sequences $\{\alpha_n\}$ and $\{\beta_n\}$ are rearrangements of $\{a_n\}$ and $\{b_n\}$ chosen recursively.

First, choose $\alpha_1, \lambda_1, \beta_1, \beta_2 \neq \beta_1$, so $f_1(\alpha_1) = \beta_1$.

Suppose we have respectively distinct

$$\alpha_1, \dots, \alpha_{2n-1}; \quad \lambda_1, \dots, \lambda_{2n-1}; \quad \beta_1, \dots, \beta_{2n}$$
$$\alpha_{2k-1} = (\text{first } a_i) \in A \setminus \{\alpha_j : j < 2k - 1\}, \quad k = 1, \dots, n$$
$$\beta_{2k} = (\text{first } b_i) \in B \setminus \{\beta_j : j < 2k\}, \quad k = 1, \dots, n$$
$$f(\alpha_j) = \beta_j, \quad j = 1, \dots, 2n - 1$$

Choose

 $\begin{aligned} &\alpha_{2n}, \lambda_{2n}, \\ &\beta_{2n+1}, \alpha_{2n+1}, \lambda_{2n+1}, \\ &\beta_{2(n+1)} \\ &\text{with} \end{aligned}$

$$f_{2n}(\alpha_{2n}) = \beta_{2n}$$
 $f_{2n+1}(\alpha_{2n+1}) = \beta_{2n+1}$

α_1	λ_1	β_1
—	—	β_2
_	—	_
•	•	•
•	•	•
•	•	•
α_{2n-1}	λ_{2n-1}	β_{2n-1}
$[\alpha_{2n}]$	λ_{2n}]	β_{2n}
α_{2n+1}	$[\lambda_{2n+1}]$	β_{2n+1}]
	—	$\beta_{2(n+1)}$

)

How to find $[\alpha_{2n}, \lambda_{2n}]$ such that

$$\begin{split} \beta_{2n} &= f_{2n}(\alpha_{2n}) = \alpha_{2n} + \sum_{j=1}^{2n-1} \lambda_j h_j(\alpha_{2n}) + \lambda_{2n} h_{2n}(\alpha_{2n}) = \\ f_{2n-1}(\alpha_{2n}) + \lambda_{2n} h_{2n}(\alpha_{2n}). \end{split}$$

Put

$$g(x, y) = f_{2n-1}(x) + yh_{2n}(x).$$

Fix y_n small. Show $g(\cdot, y_n) : \mathbb{R} \to \mathbb{R}$ surjective. So, $\exists \alpha$ with $g(\alpha, y_n) = \beta_{2n}$. Implicit function theorem implies, there is $(\alpha_{2n}, \lambda_{2n})$ near (α, y_n) , with $g(\alpha_{2n}, \lambda_{2n}) = \beta_{2n}$ and $\alpha_{2n} \in A$.

Universal Functions

Birkhoff 1925 There exists an entire function f which is *universal*. That is, for each entire function g, there is a sequence a_n , such that $f(\cdot + a_n) \rightarrow g$.

Most entire functions are universal.

No example is known.

Voronin Universality Theorem 1975

Zero-free holomorphic functions in strip $1/2 < \Re z < 1$ can be approximated by translates of the Riemann zeta-function: $\zeta(z + it_n), t_n \to \infty$.

If the zero-free hyposthesis is superfluous, the Riemann Hypothesis fails.

Bagchi 1981 The following are equivalent: i) $\exists t_n \rightarrow \infty$, $\underline{d}\{t_n\} > 0$, $\zeta(\cdot + it_n) \rightarrow \zeta$ in strip; ii) the Riemann Hypothesis is true.

Approximation on Closed Sets

A *chaplet* is a locally finite sequence of disjoint closed discs $\overline{D}_1, \overline{D}_2, \ldots$.

Theorem Given a chaplet $\{\overline{D}_n\}$, a sequence of positive numbers $\{\epsilon_n\}$ and a sequence of functions $f_n \in A(\overline{D}_n) = C(\overline{D}_n) \cap Hol(D_n)$, there exists an entire function *g*, such that, for n = 1, 2, ...,

$$|g(z) - f_n(z)| < \epsilon_n$$
, for all $z \in \overline{D}_n$.

Application. The existence of a universal entire function (Birkhoff's Theorem).

Approximation by Functions of Finite Order

With the help of a (not *the*) theorem of Arakelian on approximation by entire functions of finite order, we can prove:

Theorem. For an arbitrary sequence $\epsilon_k > 0$, there exists a sequence $D_k = D(a_k, k)$ such that for every sequence $f_k \in \overline{D}_k$, with $|f_k \epsilon_k| < 1$, there exists an entire function fof finite order, such that

$$|f(z) - f_k(z)| < \epsilon_k$$
, for all $z \in \overline{D}_k$.

Corollary. For sequences $\mathbb{D}_n = (|z| < n), \varphi_n \in A(\overline{\mathbb{D}_n})$ and $\epsilon_n > 0$, there exists a subsequence a_{k_n} and an entire function *f* of finite order, such that, setting $f_n(z) = \varphi_n(z - a_{k_n})$,

$$|f(z + a_{k_n}) - \varphi_n(z)| < \epsilon_{k_n}, \text{ for all } z \in \overline{\mathbb{D}}_n.$$

Application (Arakelian). There exist universal entire functions of finite order.

Given: countable dense real sets A and B,

Theorem (again)

There exists an entire function f of finite order :

f is an order isomorphism of *A* onto *B*; f'(x) > 0, $x \in \mathbb{R}$;

Can impose other conditions on an order isomorphism f.

Given: increasing sequences a_n and b_n , without limit points,

Theorem (universal-interpolating)

There exists a universal entire function f: f is an order isomorphism of A onto B; $f'(x) > 0, x \in \mathbb{R}$; and $f(a_n) = b_n, n = 1, 2, ...$

Proof of universal-interpolating theorem .

Lemma. Suppose $\{D_n\}$ a chaplet disjoint from \mathbb{R} ; $\{a_n\}$ and $\{b_n\}$, $n = 0, \pm 1, \pm 2, \ldots$, strictly increasing sequences of real numbers tending to ∞ , as $n \to \infty$ and $\epsilon_n > 0$. Then, for every sequence $g_n \in A(\overline{D}_n)$, there exists an entire function Φ , such that $|\Phi - g_n| < \epsilon_n$ on \overline{D}_n ; Φ maps \mathbb{R} bijectively onto \mathbb{R} ; $\Phi' > 0$ on \mathbb{R} and $\Phi(a_n) = b_n$, $n = 0, \pm 1, \pm 2, \ldots$.

Lemma. Same hypotheses, there exists entire function H, such that $H_{D_n} \sim 0$, $H_R \sim 1$, $H'_R \sim 0$

Proof of theorem. Replace

$$f(z) = \mathbf{z} + \sum_{j=1}^{\infty} \lambda_j e^{-\mathbf{z}^2} \prod_{k=1}^{j-1} (\mathbf{z} - \boldsymbol{\alpha}_k)$$

by

$$f(z) = \mathbf{\Phi}(z) + \mathbf{H}(z) \sum_{j=1}^{\infty} \lambda_j e^{-\mathbf{\Phi}^2(z)} \prod_{k=1}^{j-1} (\mathbf{\Phi}(z) - \mathbf{\Phi}(\alpha_k)).$$

Franklin 1925 (again)

For *A* and *B* countable dense subsets of \mathbb{R} , there exists a bianalytic map $f : \mathbb{R} \to \mathbb{R}$, such that:

f restricts to an order isomorphism of A onto B.

Morayne 1987

If *A* and *B* are countable dense subsets of \mathbb{C}^n (respectively \mathbb{R}^n), n > 1, there is a measure preserving biholomorphic mapping of \mathbb{C}^n (respectively bianalytic mapping of \mathbb{R}^n) which maps *A* to *B*.

Rosay-Rudin 1988 Same result for \mathbb{C}^n only.

Remarks

1. (n=1, real case) Franklin's proof incorrect.

2. (n=1, real case) The only measure preserving order isomorphisms of \mathbb{R} are translations $x \mapsto x + c$. The only possible image of a real set *A* is the real set B = A + c.

(n=1, complex case) Barth/Schneider 1972

If *A* and *B* are countable dense subsets of \mathbb{C} , there exists an entire function *f*, such that $f(z) \in B$ if and only if $z \in A$.

Paucity

Let \mathcal{E} denote the space of entire functions and \mathcal{E}_R denote the "real" entire functions, that is, the entire functions which map reals to reals.

Remark. \mathcal{E}_R is a closed nowhere dense subset of \mathcal{E} .

Let $\mathcal{E}_{\rightarrow}$ be the space of functions in \mathcal{E}_R , whose restrictions to the reals are non-decreasing.

Remark. $\mathcal{E}_{\rightarrow}$ is a closed nowhere dense subset of \mathcal{E}_R .

EFHARISTO!