Bohr's inequality for harmonic mappings

Stavros Evdoridis
Dept. of Mathematics and Systems Analysis
Aalto University

New Developments in Complex Analysis and Function Theory
University of Crete - July 2, 2018

Classical Inequality

In 1914, the Danish mathematician Harald Bohr (1887-1951) proved the following theorem:

Theorem 1 (Bohr's Inequality)

Let f be an analytic function on the unit disc \mathbb{D}, with the Taylor expansion $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $|f(z)|<1$. Then

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k} \leq 1, \quad \text { for } \quad|z|=r \leq 1 / 3
$$

and the constant $1 / 3$ is sharp.

Classical Inequality

H. Bohr proved the above theorem for $r \leq 1 / 6$. Right after his proof, M. Riesz, I. Schur and N. Wiener worked independently to show that it remains true for $r \leq 1 / 3$ and this number cannot be improved.
The best constant r for which the inequality holds, is called the Bohr radius.

Improvements

Recently, I. Kayumov and S. Ponnusamy showed that the classical theorem can be further improved by adding a suitable non-negative term at the left hand side of the inequality. Hence, they obtained the following results:

Theorem 2

Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in $\mathbb{D},|f(z)| \leq 1$ in \mathbb{D} and S_{r} denotes the area of the image of the subdisc $|z|<r$ under the mapping f. Then

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}+\frac{16}{9}\left(\frac{S_{r}}{\pi}\right) \leq 1, \quad \text { for } \quad r \leq \frac{1}{3}
$$

and the constants $1 / 3$ and $16 / 9$ cannot be improved.

Improvements

Theorem 3

Suppose that $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in \mathbb{D} and $|f(z)| \leq 1$ in \mathbb{D}. Then we have

$$
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\frac{1}{2}\left|a_{k}\right|^{2}\right) r^{k} \leq 1, \quad \text { for } \quad r \leq \frac{1}{3}
$$

and the constants $1 / 3$ and $1 / 2$ cannot be improved.

Harmonic Mappings

Definition 1

A complex-valued function $f(z)=u(z)+i v(z)$, defined in the unit disc, is said to be a harmonic mapping in \mathbb{D}, if both u, v are real harmonic functions in \mathbb{D}. Then we write $\Delta f=0$, where Δ is the complex Laplacian operator

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}} .
$$

Harmonic Mappings

If f is a harmonic mapping in \mathbb{D}, then it has the canonical representation $f=h+\bar{g}$, where h and g are analytic in \mathbb{D} with $h(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}$.
Let us consider the affine map $f(z)=a+b z+\overline{c z}$, restricted in \mathbb{D}. We can easily see that $f_{z \bar{z}}=0$ which implies that f is a harmonic mapping with $h(z)=a+b z$ and $g(z)=c z$.

Harmonic Analogues

In 2010, Y. Abu-Muhanna proved an analogue of Bohr's inequality, for harmonic mappings.

Theorem 4

Let $f(z)=h(z)+\overline{g(z)}=\sum_{k=0}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}$ be a harmonic mapping in \mathbb{D}, with $|f(z)|<1$ for all $z \in \mathbb{D}$. Then,

$$
\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \leq \frac{2}{\pi}, \quad \text { for } \quad r \leq 1 / 3
$$

Harmonic Analogues

Another analogue was obtained by I. Kayumov, S. Ponnusamy and N. Shakirov

Theorem 5

Suppose that $f(z)=h(z)+\overline{g(z)}=\sum_{k=0}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}$ is a harmonic mapping in \mathbb{D}, with $|h(z)| \leq 1$ and $\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right|$ for all $z \in \mathbb{D}$. Then,

$$
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \leq 1, \quad \text { for } \quad r \leq 1 / 5
$$

and the inequality is sharp.

Harmonic Analogues

QUESTION: Can we find $0<r_{0}<1$ such that for any harmonic mapping f, with $|f(z)|<1$ in \mathbb{D},

$$
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left|a_{k}+b_{k}\right| r^{k} \leq 1
$$

for all $r<r_{0}$?
 ANSWER: NO

Harmonic Analogues

Example 1

We consider a real-valued harmonic mapping f in the unit disc, such that $f(0)=0$ and $|f(z)|<1$ in \mathbb{D}. Then, $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \overline{a_{n} z^{n}}$.
The mapping

$$
F_{\beta}(z)=f(z) \sin \beta+i \cos \beta, \quad \beta \in \mathbb{R}
$$

is still harmonic, with $\left|F_{\beta}(z)\right|<1$ in \mathbb{D}. If $a_{n} \neq 0$, then

$$
\frac{|\sin \beta|\left|a_{n}+a_{n}\right|}{1-|\cos \beta|} \rightarrow \infty \quad \text { as } \quad \beta \rightarrow 0
$$

Hence, there is not any $r>0$ such that

$$
|i \cos \beta|+\sum_{n=1}^{\infty}\left|\sin \beta\left(a_{n}+a_{n}\right)\right| r^{n} \leq 1 .
$$

New Results

Our goal is to improve Theorem 5 and obtain sharp results.

Theorem 6

Suppose that $f(z)=h(z)+\overline{g(z)}=\sum_{k=0}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}$ is a harmonic mapping in \mathbb{D}, with $|h(z)| \leq 1$ and $\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right|$ for $z \in \mathbb{D}$. Then

$$
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k}+\frac{3}{8} \sum_{k=1}^{\infty}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right) r^{k} \leq 1, \quad \text { for } \quad r \leq \frac{1}{5}
$$

The constants $3 / 8$ and $1 / 5$ cannot be improved.

New Results

Theorem 7

Suppose that $f(z)=h(z)+\overline{g(z)}=\sum_{k=0}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}$ is a harmonic mapping in \mathbb{D}, where $|h(z)| \leq 1$ and $\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right|$ for $z \in \mathbb{D}$. Then

$$
\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k}+\left|h(z)-a_{0}\right|^{2} \leq 1, \quad \text { for } \quad r \leq \frac{1}{5} .
$$

The constant $1 / 5$ is best possible.

New Results

Theorem 8

Suppose that $f(z)=h(z)+\overline{g(z)}=\sum_{k=0}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}$ is a harmonic mapping of the unit disc, where h is a bounded function in \mathbb{D} such that $|h(z)|<1$ and $\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right|$ for $z \in \mathbb{D}$. If S_{r} denotes the area of the image of the subdisc $|z|<r$ under the mapping f, then

$$
H(r):=\left|a_{0}\right|+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k}+\frac{108}{25}\left(\frac{S_{r}}{\pi}\right) \leq 1, \quad \text { for } \quad r \leq \frac{1}{5}
$$

and the constants $1 / 5$ and $c=108 / 25$ cannot be improved.

Proof (Sketch)

First of all, we need sufficient upper bounds for the terms in the left hand side of the inequality.
Since h is analytic and bounded by 1 in the unit disc, it holds that

$$
\left|a_{k}\right| \leq 1-\left|a_{0}\right|^{2}, \quad k>0,
$$

which implies that

$$
\frac{S_{r}}{\pi} \leq\left(1-\left|a_{0}\right|^{2}\right) \frac{r^{2}}{\left(1-r^{2}\right)^{2}}, \quad r \in(0,1) .
$$

In addition, for the functions h and g the following inequalities are true

$$
\sum_{k=1}^{\infty}\left|a_{k}\right| r^{k} \leq \begin{cases}r \frac{1-\left|a_{0}\right|^{2}}{1-r\left|a_{0}\right|}=: A(r) & \text { for }\left|a_{0}\right| \geq r \\ r \frac{\sqrt{1-\left|a_{0}\right|^{2}}}{\sqrt{1-r^{2}}}=: B(r) & \text { for }\left|a_{0}\right|<r\end{cases}
$$

and

$$
\sum_{k=1}^{\infty}\left|b_{k}\right| r^{k} \leq \frac{\left(1-\left|a_{0}\right|^{2}\right) r}{\sqrt{\left(1-\left|a_{0}\right|^{2} r\right)(1-r)}}=: C(r), \quad 0<r \leq 1 / 2
$$

Proof (Sketch)

- For $1 / 5 \leq\left|a_{0}\right|<1$ and since H is an increasing function of r, we have

$$
\begin{aligned}
H(r) & \leq\left|a_{0}\right|+A(1 / 5)+C(1 / 5)+\frac{3}{16}\left(1-\left|a_{0}\right|^{2}\right)^{2} \\
& =1-\frac{1-\left|a_{0}\right|}{2\left(5-\left|a_{0}\right|\right) \sqrt{5-\left|a_{0}\right|^{2}}} \Phi\left(\left|a_{0}\right|\right), \\
& \leq 1
\end{aligned}
$$

as Φ is non-negative in $[1 / 5,1)$.

- For $0 \leq\left|a_{0}\right|<1 / 5$,

$$
H(r) \leq\left|a_{0}\right|+B(1 / 5)+C(1 / 5)+\frac{3}{16}\left(1-\left|a_{0}\right|^{2}\right)^{2}<1 .
$$

For the sharpness, we use the function $f_{0}=h_{0}+\overline{g_{0}}$, where $h_{0}(z)=\frac{a-z}{1-\bar{z} z}$ and $g_{0}(z)=\lambda\left(h_{0}(z)-a\right), a, \lambda \in \mathbb{D}$. Then, we can see that $H(1 / 5)>1$ when $a, \lambda \rightarrow 1$ and $c>108 / 25$.

THANK YOU!

