On computability and computational complexity of Julia sets

Artem Dudko

IM PAN

CAFT 2018 Heraklion

July 5, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Julia set of a polynomial f

Filled Julia set $K_f = \{z \in \mathbb{C} : \{f^n(z)\}_{n \in \mathbb{N}} \text{ is bounded}\}.$ Julia set $J_f = \partial K_f$.

Julia set of a polynomial f

Filled Julia set $K_f = \{z \in \mathbb{C} : \{f^n(z)\}_{n \in \mathbb{N}} \text{ is bounded}\}.$ Julia set $J_f = \partial K_f$.

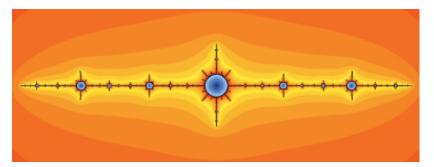


Figure: The airplane map $p(z) = z^2 + c$, $c \approx -1.755$.

(日) (四) (日) (日) (日)

Computability

Definition

A real number α is called computable if there is an algorithm (Turing Machine) which given $n \in \mathbb{N}$ produces a number $\phi(n)$ such that

 $|\alpha - \phi(n)| < 2^{-n}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computability

Definition

A real number α is called computable if there is an algorithm (Turing Machine) which given $n \in \mathbb{N}$ produces a number $\phi(n)$ such that

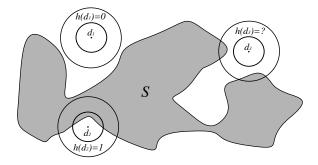
$$|\alpha - \phi(n)| < 2^{-n}.$$

A 2^{-n} approximation of a set S can be described using a function

$$h_S(n,z) = \begin{cases} 1, & \text{if } d(z,S) \leq 2^{-n-1}, \\ 0, & \text{if } d(z,S) \geq 2 \cdot 2^{-n-1}, \\ 0 \text{ or } 1 & \text{otherwise}, \end{cases}$$

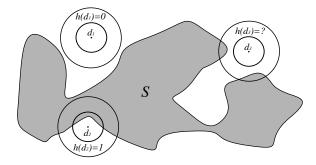
where $n \in \mathbb{N}$ and $z = (i/2^{n+2}, j/2^{n+2}), i, j \in \mathbb{Z}$.

Computational complexity



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Computational complexity



Definition

 $S \subset \mathbb{R}^2$ is computable in time t(n) if there is an algorithm which computes $h(n, \bullet)$ in time t(n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An oracle

Definition

A function $\phi : \mathbb{N} \to \mathbb{D}^n$ is called an oracle for an element $x \in \mathbb{R}^n$, if $\|\phi(m) - x\| < 2^{-m}$ for all $m \in \mathbb{N}$, where $\|\cdot\|$ stands for the Euclidian norm in \mathbb{R}^n .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

An oracle

Definition

A function $\phi : \mathbb{N} \to \mathbb{D}^n$ is called an oracle for an element $x \in \mathbb{R}^n$, if $\|\phi(m) - x\| < 2^{-m}$ for all $m \in \mathbb{N}$, where $\|\cdot\|$ stands for the Euclidian norm in \mathbb{R}^n .

Definition

The Julia set J_f of a map f is called computable in time t(n), if there is an algorithm with an oracle for the values of f, which computes $h(n, \bullet)$ for $S = J_f$ in time t(n). It is called poly-time if t(n) can be bounded by a polynomial.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_f in which f is strictly expanding:

 $\|Df_{z}(v)\|_{\mu} > \|v\|_{\mu}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for any $z \in J_f$ and any tangent vector v.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_f in which f is strictly expanding:

 $\|Df_z(v)\|_{\mu} > \|v\|_{\mu}$

for any $z \in J_f$ and any tangent vector v.

Proposition (Milnor)

A rational map f is hyperbolic if and only if every critical orbit of f either converges to an attracting (or a super-attracting) cycle, or is periodic.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_f in which f is strictly expanding:

 $\|Df_z(v)\|_{\mu} > \|v\|_{\mu}$

for any $z \in J_f$ and any tangent vector v.

Proposition (Milnor)

A rational map f is hyperbolic if and only if every critical orbit of f either converges to an attracting (or a super-attracting) cycle, or is periodic.

Theorem (Braverman 04, Rettinger 05)

For any $d \ge 2$ there exists a Turing Machine with an oracle for the coefficients of a rational map of degree d which computes the Julia set of every hyperbolic rational map in polynomial time.

Let f(z) be a hyperbolic rational map. Compute a closed neighborhood U of J_f which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma > 1$ on U. Fix sufficiently large number C (of order $\log 2/\log \gamma$).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let f(z) be a hyperbolic rational map. Compute a closed neighborhood U of J_f which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma > 1$ on U. Fix sufficiently large number C (of order $\log 2/\log \gamma$). Algorithm:

given a dyadic point z and n ∈ N compute approximate values of z_k = f^k(z), 1 ≤ k ≤ Cn;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let f(z) be a hyperbolic rational map. Compute a closed neighborhood U of J_f which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma > 1$ on U. Fix sufficiently large number C (of order $\log 2/\log \gamma$). Algorithm:

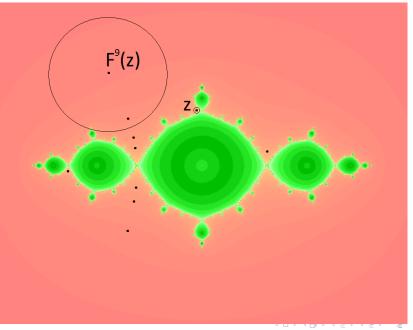
given a dyadic point z and n ∈ N compute approximate values of z_k = f^k(z), 1 ≤ k ≤ Cn;

▶ if $z_k \in U$ for all $1 \leq k \leq Cn$ then $d(z, J_f) < 2^{-n}$;

Let f(z) be a hyperbolic rational map. Compute a closed neighborhood U of J_f which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma > 1$ on U. Fix sufficiently large number C (of order $\log 2/\log \gamma$). Algorithm:

- given a dyadic point z and n ∈ N compute approximate values of z_k = f^k(z), 1 ≤ k ≤ Cn;
- if $z_k \in U$ for all $1 \leq k \leq Cn$ then $d(z, J_f) < 2^{-n}$;
- ▶ if $z_k \notin U$ for some $1 \leq k \leq Cn$ then by Koebe distortion Theorem up to a constant factor

$$\mathrm{d}(z,J_f) pprox rac{\mathrm{d}(z_k,J_f)}{|DF^k(z)|} pprox rac{1}{|DF^k(z)|}.$$



Poly-time computability of parabolic Julia sets

For a holomorphic map f a periodic point z_0 of period p is parabolic if $Df^p(z_0) = \exp(2\pi i\theta), \theta \in \mathbb{Q}$, and f^p is not conjugated to a rotation near z_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Poly-time computability of parabolic Julia sets

For a holomorphic map f a periodic point z_0 of period p is parabolic if $Df^p(z_0) = \exp(2\pi i\theta), \theta \in \mathbb{Q}$, and f^p is not conjugated to a rotation near z_0 .

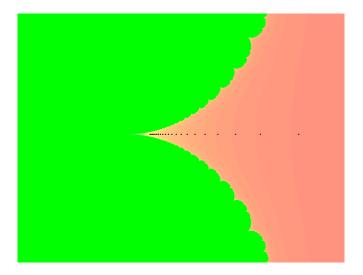
Theorem (Braverman 06)

For any $d \ge 2$ there exists a Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f of degree d such that the following is true. Given that every critical orbit of f converges either to an attracting or to a parabolic orbit, \mathcal{M} computes J_f in polynomial time.

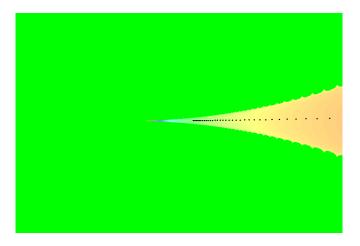
For simplicity, assume $f(z_0) = z_0$ and $Df(z_0) = 1$.

For simplicity, assume $f(z_0) = z_0$ and $Df(z_0) = 1$.

Problem: the dynamics of f near z_0 is exponentially slow.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Speeding up the dynamics

For simplicity, assume $f(z_0) = z_0$ and $Df(z_0) = 1$.

Problem: the dynamics of f near z_0 is exponentially slow.

Solution 1 (Braverman): show directly that exponential iterates of f near z_0 can be computed in a polynomial time.

Speeding up the dynamics

For simplicity, assume $f(z_0) = z_0$ and $Df(z_0) = 1$.

Problem: the dynamics of f near z_0 is exponentially slow.

Solution 1 (Braverman): show directly that exponential iterates of f near z_0 can be computed in a polynomial time.

Solution 2: Fatou coordinates $\phi_{a,r}^i$ conjugate f to $z \to z+1$ near z_0 ; $\phi_{a,r}^i$ can by approximated effectively by the formal solutions of the Fatou coordinate equation $\phi \circ f(z) = z + 1$ (Dudko-Sauzin 14).

Siegel periodic points

For a holomorphic map f a periodic point z_0 of period p is called Siegel if $Df^p(z_0) = \exp(2\pi i\theta), \theta \in \mathbb{R} \setminus \mathbb{Q}$, and f^p is conjugated (by a conformal map) to a rotation near z_0 . The maximal domain around z_0 on which such conjugacy exists is called Siegel disk.

Siegel periodic points

For a holomorphic map f a periodic point z_0 of period p is called Siegel if $Df^p(z_0) = \exp(2\pi i\theta), \theta \in \mathbb{R} \setminus \mathbb{Q}$, and f^p is conjugated (by a conformal map) to a rotation near z_0 . The maximal domain around z_0 on which such conjugacy exists is called Siegel disk.

Consider $P_{\theta}(z) = \exp(2\pi i\theta)z + z^2$, $\theta \in [0, 1)$. Let p_n/q_n be the sequence of the closest rational approximations of θ and

$$B(\theta) = \sum \frac{\log(q_{n+1})}{q_n}$$

Siegel periodic points

For a holomorphic map f a periodic point z_0 of period p is called Siegel if $Df^p(z_0) = \exp(2\pi i\theta), \theta \in \mathbb{R} \setminus \mathbb{Q}$, and f^p is conjugated (by a conformal map) to a rotation near z_0 . The maximal domain around z_0 on which such conjugacy exists is called Siegel disk.

Consider $P_{\theta}(z) = \exp(2\pi i\theta)z + z^2$, $\theta \in [0, 1)$. Let p_n/q_n be the sequence of the closest rational approximations of θ and

$$B(\theta) = \sum \frac{\log(q_{n+1})}{q_n}$$

Theorem (Brjuno 72, Yoccoz 81) Origin is a Siegel point for P_{θ} iff $B(\theta) < \infty$. Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)

There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.

Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)

There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.

Theorem (Binder-Braverman-Yampolsky 06)

There exists Siegel parameters θ for which $J_{P_{\theta}}$ has arbitrarily large computational complexity.

Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)

There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.

Theorem (Binder-Braverman-Yampolsky 06)

There exists Siegel parameters θ for which $J_{P_{\theta}}$ has arbitrarily large computational complexity.

Let $\Delta(\theta)$ be the Siegel disk of P_{θ} , $\rho(\theta) = \inf_{z \in \partial \Delta(\theta)} |z|$ be the inner radius of $\Delta(\theta)$ and $r(\theta)$ be the conformal radius of $\Delta(\theta)$.

Theorem (Binder-Braverman-Yampolsky 06)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The following statements are equivalent:

- $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

Theorem (Binder-Braverman-Yampolsky 06)

The following statements are equivalent:

- \blacktriangleright $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_n convergent to r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Binder-Braverman-Yampolsky 06)

The following statements are equivalent:

- \blacktriangleright $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- r(θ) is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_n convergent to r.

Theorem (Braverman-Yampolsky 06)

Let $r \in (0, 0.1]$. There exists θ such that P_{θ} has a Siegel disk with $r(\theta) = r$ iff r is right-computable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Binder-Braverman-Yampolsky 06)

The following statements are equivalent:

- \blacktriangleright $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- r(θ) is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_n convergent to r.

Theorem (Braverman-Yampolsky 06)

Let $r \in (0, 0.1]$. There exists θ such that P_{θ} has a Siegel disk with $r(\theta) = r$ iff r is right-computable.

Take $r \in (0, 0.1]$ right-computable but not computable. Let θ be such that $r(\theta) = r$. Then $J_{P_{\theta}}$ is not computable.

Poly-time computability of the Feigenbaum Julia set

Let F be the fixed point of the period-doubling renormalization (also referred to as the Feigenbaum map). The map F is the solution of the Cvitanović-Feigenbaum equation:

$$\begin{cases} F(z) &= -\frac{1}{\lambda}F^{2}(\lambda z), \\ F(0) &= 1, \\ F''(0) \neq 0. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Poly-time computability of the Feigenbaum Julia set

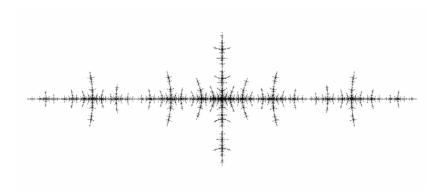
Let F be the fixed point of the period-doubling renormalization (also referred to as the Feigenbaum map). The map F is the solution of the Cvitanović-Feigenbaum equation:

$$\begin{cases} F(z) &= -\frac{1}{\lambda}F^{2}(\lambda z), \\ F(0) &= 1, \\ F''(0) \neq 0. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

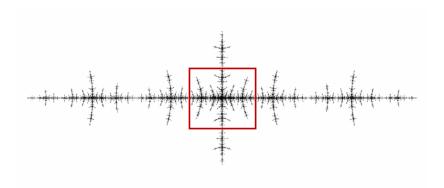
Theorem (Dudko-Yampolsky 16) The Julia set J_F is poly-time computable.

The Feigenbaum Julia set



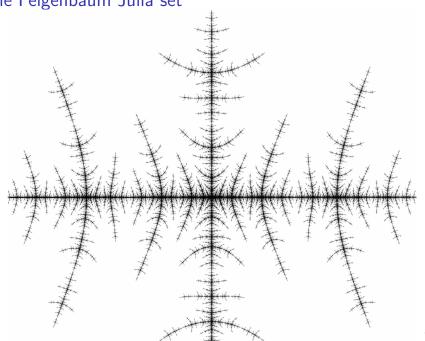
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シのへで

The Feigenbaum Julia set



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The Feigenbaum Julia set



Speeding up the dynamics

Problem: the Julia set J_F has two computational difficulties:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Speeding up the dynamics

Problem: the Julia set J_F has two computational difficulties:

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Solution: the dynamics can be speeded up by:

$${\mathcal F}^{2^k}(z)=(-\lambda)^k{\mathcal F}(z/\lambda^k), \;\; |z|< C\lambda^k.$$

For z with $d(z, J_F) \approx 2^{-n}$ polynomial number of speeded up iterations is sufficient to escape ϵ -neighborhood of J_F . Moreover, the distortion of the iterate is bounded near z.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Speeding up the dynamics

Problem: the Julia set J_F has two computational difficulties:

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Solution: the dynamics can be speeded up by:

$$F^{2^k}(z) = (-\lambda)^k F(z/\lambda^k), \; \; |z| < C\lambda^k.$$

For z with $d(z, J_F) \approx 2^{-n}$ polynomial number of speeded up iterations is sufficient to escape ϵ -neighborhood of J_F . Moreover, the distortion of the iterate is bounded near z.

We used the algorithms designed for computing J_F in the computer-assisted proof of

Theorem (Dudko-Sutherland 17)

The Julia set J_F has Hausdorff dimension less than two (and therefore its Lebesgue area is zero).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there exist constants $C, \gamma > 0$ such that the following holds: for any critical point $c \in J_f$ of f whose forward orbit does not contain any critical points one has:

 $|Df^n(f(c))| \ge Ce^{\gamma n}$ for any $n \in \mathbb{N}$.

Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there exist constants $C, \gamma > 0$ such that the following holds: for any critical point $c \in J_f$ of f whose forward orbit does not contain any critical points one has:

$$|Df^n(f(c))| \ge Ce^{\gamma n}$$
 for any $n \in \mathbb{N}$.

Theorem (Avila-Moreira 05)

For almost every real parameter c the map $f_c(z) = z^2 + c$ is either Collet-Eckmann or hyperbolic.

Exponential Shrinking of Components

Definition

A rational map f satisfies Exponential Shrinking of Components (ESC) condition if there exists $\lambda < 1$ and r > 0 such that for every $n \in \mathbb{N}$, any $x \in J_f$ and any connected component W of $f^{-n}(U_r(x))$ one has diam $(W) < \lambda^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exponential Shrinking of Components

Definition

A rational map f satisfies Exponential Shrinking of Components (ESC) condition if there exists $\lambda < 1$ and r > 0 such that for every $n \in \mathbb{N}$, any $x \in J_f$ and any connected component W of $f^{-n}(U_r(x))$ one has $\operatorname{diam}(W) < \lambda^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Przytycki-Rivera-Letelier-Smirnov 03)

Collet-Eckmann condition implies Exponential Shrinking of Components condition.

Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)

For each $d \ge 2$ there exists an oracle Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f satisfying ESC, which, given a certain non-uniform information, computes J_f in polynomial time.

Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)

For each $d \ge 2$ there exists an oracle Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f satisfying ESC, which, given a certain non-uniform information, computes J_f in polynomial time.

Corollary

For almost every real value of the parameter c, the Julia set J_c is poly-time.

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon > 0$ and C > 0such that for any point z with $d(z, J_f) \approx 2^{-n}$ one has

 $d(f^{Cn}(z), J_f) > \epsilon.$

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon > 0$ and C > 0 such that for any point z with $d(z, J_f) \approx 2^{-n}$ one has

$$d(f^{Cn}(z), J_f) > \epsilon.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem: $f^i(z)$ can be close to critical points many times for $0 \le i \le Cn$. Therefore, the distortion of f^{Cn} near z cannot be bounded by a constant.

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon > 0$ and C > 0such that for any point z with $d(z, J_f) \approx 2^{-n}$ one has

$$d(f^{Cn}(z), J_f) > \epsilon.$$

Problem: $f^{i}(z)$ can be close to critical points many times for $0 \leq i \leq Cn$. Therefore, the distortion of f^{Cn} near z cannot be bounded by a constant.

Solution: we show that $f^i(z), 0 \leq i \leq Cn$, approach critical points at most $K\sqrt{n}$ times and the distortion of f^{Cn} near z is bounded by $M^{\sqrt{n}}$. This allows to estimate $d(z, J_F)$ up to $M^{\sqrt{n}}$.

(日)((1))

 Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).
- There exists a computable c ∈ C and a computable angle α ∈ ℝ such that the impression of the external angle corresponding to α is non-computable (Binder-Rojas-Yampolsky 15).

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).
- There exists a computable c ∈ C and a computable angle α ∈ ℝ such that the impression of the external angle corresponding to α is non-computable (Binder-Rojas-Yampolsky 15).
- There exists a (natural) family of cubic polynomials for which the connectedness locus (Mandelbrot-like set) is non-computable (Coronel-Rojas-Yampolsky 17).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (*i.e.*with multiplier exp(2π*i*θ), θ ∈ ℝ \ Q, non-linearizable) of tractable computational complexity?

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (*i.e.*with multiplier exp(2π*i*θ), θ ∈ ℝ \ Q, non-linearizable) of tractable computational complexity?
- Are Julia sets of all Feigenbaum maps (infinitely renormalizable with bounded combinatorics and a priori bounds) poly-time?

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (*i.e.*with multiplier exp(2π*i*θ), θ ∈ ℝ \ Q, non-linearizable) of tractable computational complexity?
- Are Julia sets of all Feigenbaum maps (infinitely renormalizable with bounded combinatorics and a priori bounds) poly-time?
- What can be said about computability and computational complexity of Julia sets (or escaping, or fast escaping sets) of transcendental entire maps?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you!