On computability and computational complexity

 of Julia setsArtem Dudko

IM PAN
CAFT 2018
Heraklion
July 5, 2018

Julia set of a polynomial f

Filled Julia set $K_{f}=\left\{z \in \mathbb{C}:\left\{f^{n}(z)\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$. Julia set $J_{f}=\partial K_{f}$.

Julia set of a polynomial f

Filled Julia set $K_{f}=\left\{z \in \mathbb{C}:\left\{f^{n}(z)\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$. Julia set $J_{f}=\partial K_{f}$.

Figure: The airplane map $p(z)=z^{2}+c, c \approx-1.755$.

Computability

Definition

A real number α is called computable if there is an algorithm (Turing Machine) which given $n \in \mathbb{N}$ produces a number $\phi(n)$ such that

$$
|\alpha-\phi(n)|<2^{-n} .
$$

Computability

Definition

A real number α is called computable if there is an algorithm (Turing Machine) which given $n \in \mathbb{N}$ produces a number $\phi(n)$ such that

$$
|\alpha-\phi(n)|<2^{-n} .
$$

A 2^{-n} approximation of a set S can be described using a function

$$
h_{S}(n, z)= \begin{cases}1, & \text { if } d(z, S) \leqslant 2^{-n-1} \\ 0, & \text { if } d(z, S) \geqslant 2 \cdot 2^{-n-1} \\ 0 \text { or } 1 & \text { otherwise }\end{cases}
$$

where $n \in \mathbb{N}$ and $z=\left(i / 2^{n+2}, j / 2^{n+2}\right), i, j \in \mathbb{Z}$.

Computational complexity

Computational complexity

Definition

$S \subset \mathbb{R}^{2}$ is computable in time $t(n)$ if there is an algorithm which computes $h(n, \bullet)$ in time $t(n)$.

An oracle

Definition

A function $\phi: \mathbb{N} \rightarrow \mathbb{D}^{n}$ is called an oracle for an element $x \in \mathbb{R}^{n}$, if $\|\phi(m)-x\|<2^{-m}$ for all $m \in \mathbb{N}$, where $\|\cdot\|$ stands for the Euclidian norm in \mathbb{R}^{n}.

An oracle

Definition

A function $\phi: \mathbb{N} \rightarrow \mathbb{D}^{n}$ is called an oracle for an element $x \in \mathbb{R}^{n}$, if $\|\phi(m)-x\|<2^{-m}$ for all $m \in \mathbb{N}$, where $\|\cdot\|$ stands for the
Euclidian norm in \mathbb{R}^{n}.

Definition

The Julia set J_{f} of a map f is called computable in time $t(n)$, if there is an algorithm with an oracle for the values of f, which computes $h(n, \bullet)$ for $S=J_{f}$ in time $t(n)$. It is called poly-time if $t(n)$ can be bounded by a polynomial.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_{f} in which f is strictly expanding:

$$
\left\|D f_{z}(v)\right\|_{\mu}>\|v\|_{\mu}
$$

for any $z \in J_{f}$ and any tangent vector v.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_{f} in which f is strictly expanding:

$$
\left\|D f_{z}(v)\right\|_{\mu}>\|v\|_{\mu}
$$

for any $z \in J_{f}$ and any tangent vector v.
Proposition (Milnor)
A rational map f is hyperbolic if and only if every critical orbit of f either converges to an attracting (or a super-attracting) cycle, or is periodic.

Poly-time computability of hyperbolic Julia sets

A rational map f is called hyperbolic if there is a Riemannian metric μ on a neighborhood of the Julia set J_{f} in which f is strictly expanding:

$$
\left\|D f_{z}(v)\right\|_{\mu}>\|v\|_{\mu}
$$

for any $z \in J_{f}$ and any tangent vector v.
Proposition (Milnor)
A rational map f is hyperbolic if and only if every critical orbit of f either converges to an attracting (or a super-attracting) cycle, or is periodic.

Theorem (Braverman 04, Rettinger 05)
For any $d \geqslant 2$ there exists a Turing Machine with an oracle for the coefficients of a rational map of degree d which computes the Julia set of every hyperbolic rational map in polynomial time.

Distance estimator

Let $f(z)$ be a hyperbolic rational map. Compute a closed neighborhood U of J_{f} which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma>1$ on U. Fix sufficiently large number C (of order $\log 2 / \log \gamma)$.

Distance estimator

Let $f(z)$ be a hyperbolic rational map. Compute a closed neighborhood U of J_{f} which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma>1$ on U. Fix sufficiently large number C (of order $\log 2 / \log \gamma)$.
Algorithm:

- given a dyadic point z and $n \in \mathbb{N}$ compute approximate values of $z_{k}=f^{k}(z), 1 \leqslant k \leqslant C n$;

Distance estimator

Let $f(z)$ be a hyperbolic rational map. Compute a closed neighborhood U of J_{f} which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma>1$ on U. Fix sufficiently large number C (of order $\log 2 / \log \gamma)$.
Algorithm:

- given a dyadic point z and $n \in \mathbb{N}$ compute approximate values of $z_{k}=f^{k}(z), 1 \leqslant k \leqslant C n$;
- if $z_{k} \in U$ for all $1 \leqslant k \leqslant C n$ then $\mathrm{d}\left(z, J_{f}\right)<2^{-n}$;

Distance estimator

Let $f(z)$ be a hyperbolic rational map. Compute a closed neighborhood U of J_{f} which does not contain any attracting periodic points or critical points and such that μ is expanding with constant $\gamma>1$ on U. Fix sufficiently large number C (of order $\log 2 / \log \gamma)$.

Algorithm:

- given a dyadic point z and $n \in \mathbb{N}$ compute approximate values of $z_{k}=f^{k}(z), 1 \leqslant k \leqslant C n$;
- if $z_{k} \in U$ for all $1 \leqslant k \leqslant C n$ then $\mathrm{d}\left(z, J_{f}\right)<2^{-n}$;
- if $z_{k} \notin U$ for some $1 \leqslant k \leqslant C n$ then by Koebe distortion Theorem up to a constant factor

$$
\mathrm{d}\left(z, J_{f}\right) \approx \frac{\mathrm{d}\left(z_{k}, J_{f}\right)}{\left|D F^{k}(z)\right|} \approx \frac{1}{\left|D F^{k}(z)\right|}
$$

Distance estimator

Poly-time computability of parabolic Julia sets

For a holomorphic map f a periodic point z_{0} of period p is parabolic if $D f^{p}\left(z_{0}\right)=\exp (2 \pi i \theta), \theta \in \mathbb{Q}$, and f^{p} is not conjugated to a rotation near z_{0}.

Poly-time computability of parabolic Julia sets

For a holomorphic map f a periodic point z_{0} of period p is parabolic if $D f^{P}\left(z_{0}\right)=\exp (2 \pi i \theta), \theta \in \mathbb{Q}$, and f^{p} is not conjugated to a rotation near z_{0}.

Theorem (Braverman 06)
For any $d \geqslant 2$ there exists a Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f of degree d such that the following is true. Given that every critical orbit of f converges either to an attracting or to a parabolic orbit, \mathcal{M} computes J_{f} in polynomial time.

Dynamics near parabolic points

For simplicity, assume $f\left(z_{0}\right)=z_{0}$ and $\operatorname{Df}\left(z_{0}\right)=1$.

Dynamics near parabolic points

For simplicity, assume $f\left(z_{0}\right)=z_{0}$ and $\operatorname{Df}\left(z_{0}\right)=1$.
Problem: the dynamics of f near z_{0} is exponentially slow.

Dynamics near parabolic points

Dynamics near parabolic points

Speeding up the dynamics

For simplicity, assume $f\left(z_{0}\right)=z_{0}$ and $\operatorname{Df}\left(z_{0}\right)=1$.
Problem: the dynamics of f near z_{0} is exponentially slow.
Solution 1 (Braverman): show directly that exponential iterates of f near z_{0} can be computed in a polynomial time.

Speeding up the dynamics

For simplicity, assume $f\left(z_{0}\right)=z_{0}$ and $\operatorname{Df}\left(z_{0}\right)=1$.
Problem: the dynamics of f near z_{0} is exponentially slow.
Solution 1 (Braverman): show directly that exponential iterates of f near z_{0} can be computed in a polynomial time.

Solution 2: Fatou coordinates $\phi_{a, r}^{i}$ conjugate f to $z \rightarrow z+1$ near $z_{0} ; \phi_{a, r}^{i}$ can by approximated effectively by the formal solutions of the Fatou coordinate equation $\phi \circ f(z)=z+1$ (Dudko-Sauzin 14).

Siegel periodic points

For a holomorphic map f a periodic point z_{0} of period p is called Siegel if $D f^{p}\left(z_{0}\right)=\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, and f^{p} is conjugated (by a conformal map) to a rotation near z_{0}. The maximal domain around z_{0} on which such conjugacy exists is called Siegel disk.

Siegel periodic points

For a holomorphic map f a periodic point z_{0} of period p is called Siegel if $D f^{p}\left(z_{0}\right)=\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, and f^{p} is conjugated (by a conformal map) to a rotation near z_{0}. The maximal domain around z_{0} on which such conjugacy exists is called Siegel disk.

Consider $P_{\theta}(z)=\exp (2 \pi i \theta) z+z^{2}, \quad \theta \in[0,1)$. Let p_{n} / q_{n} be the sequence of the closest rational approximations of θ and

$$
B(\theta)=\sum \frac{\log \left(q_{n+1}\right)}{q_{n}}
$$

Siegel periodic points

For a holomorphic map f a periodic point z_{0} of period p is called Siegel if $D f^{p}\left(z_{0}\right)=\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, and f^{p} is conjugated (by a conformal map) to a rotation near z_{0}. The maximal domain around z_{0} on which such conjugacy exists is called Siegel disk.

Consider $P_{\theta}(z)=\exp (2 \pi i \theta) z+z^{2}, \quad \theta \in[0,1)$. Let p_{n} / q_{n} be the sequence of the closest rational approximations of θ and

$$
B(\theta)=\sum \frac{\log \left(q_{n+1}\right)}{q_{n}}
$$

Theorem (Brjuno 72, Yoccoz 81)
Origin is a Siegel point for P_{θ} iff $B(\theta)<\infty$.

Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)
There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.

Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)
There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.

Theorem (Binder-Braverman-Yampolsky 06)
There exists Siegel parameters θ for which $J_{P_{\theta}}$ has arbitrarily large computational complexity.

Computability and complexity of Siegel Julia sets

Theorem (Braverman-Yampolsky 06, 09)
There exists P_{θ} with a Siegel fixed point at the origin such that $J_{P_{\theta}}$ is not computable. Moreover, θ can be chosen computable and such that $J_{P_{\theta}}$ is locally connected.
Theorem (Binder-Braverman-Yampolsky 06)
There exists Siegel parameters θ for which $J_{P_{\theta}}$ has arbitrarily large computational complexity.
Let $\Delta(\theta)$ be the Siegel disk of $P_{\theta}, \rho(\theta)=\inf _{z \in \partial \Delta(\theta)}|z|$ be the inner radius of $\Delta(\theta)$ and $r(\theta)$ be the conformal radius of $\Delta(\theta)$.

Constructing non-computable Siegel Julia sets

Theorem (Binder-Braverman-Yampolsky 06)
The following statements are equivalent:

- $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

Constructing non-computable Siegel Julia sets

Theorem (Binder-Braverman-Yampolsky 06)
The following statements are equivalent:

- $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_{n} convergent to r.

Constructing non-computable Siegel Julia sets

Theorem (Binder-Braverman-Yampolsky 06)
The following statements are equivalent:

- $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_{n} convergent to r.

Theorem (Braverman-Yampolsky 06)
Let $r \in(0,0.1]$. There exists θ such that P_{θ} has a Siegel disk with $r(\theta)=r$ iff r is right-computable.

Constructing non-computable Siegel Julia sets

Theorem (Binder-Braverman-Yampolsky 06)
The following statements are equivalent:

- $J_{P_{\theta}}$ is computable;
- $\rho(\theta)$ is computable;
- $r(\theta)$ is computable.

A number r is called right-computable if there exists an algorithm which produces a decreasing sequence r_{n} convergent to r.

Theorem (Braverman-Yampolsky 06)
Let $r \in(0,0.1]$. There exists θ such that P_{θ} has a Siegel disk with $r(\theta)=r$ iff r is right-computable.
Take $r \in(0,0.1]$ right-computable but not computable. Let θ be such that $r(\theta)=r$. Then $J_{P_{\theta}}$ is not computalbe.

Poly-time computability of the Feigenbaum Julia set

Let F be the fixed point of the period-doubling renormalization (also referred to as the Feigenbaum map). The map F is the solution of the Cvitanović-Feigenbaum equation:

$$
\begin{cases}F(z) & =-\frac{1}{\lambda} F^{2}(\lambda z) \\ F(0) & =1 \\ F^{\prime \prime}(0) \neq 0\end{cases}
$$

Poly-time computability of the Feigenbaum Julia set

Let F be the fixed point of the period-doubling renormalization (also referred to as the Feigenbaum map). The map F is the solution of the Cvitanović-Feigenbaum equation:

$$
\begin{cases}F(z) & =-\frac{1}{\lambda} F^{2}(\lambda z) \\ F(0) & =1 \\ F^{\prime \prime}(0) \neq 0\end{cases}
$$

Theorem (Dudko-Yampolsky 16)
The Julia set J_{F} is poly-time computable.

The Feigenbaum Julia set

The Feigenbaum Julia set

The Feigenbaum Julia set

Speeding up the dynamics

Problem: the Julia set J_{F} has two computational difficulties:

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Speeding up the dynamics

Problem: the Julia set J_{F} has two computational difficulties:

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Solution: the dynamics can be speeded up by:

$$
F^{2^{k}}(z)=(-\lambda)^{k} F\left(z / \lambda^{k}\right), \quad|z|<C \lambda^{k}
$$

For z with $\mathrm{d}\left(z, J_{F}\right) \approx 2^{-n}$ polynomial number of speeded up iterations is sufficient to escape ϵ-neighborhood of J_{F}. Moreover, the distortion of the iterate is bounded near z.

Speeding up the dynamics

Problem: the Julia set J_{F} has two computational difficulties:

- the dynamics is exponentially slow near the origin;
- the critical point at the origin is recurrent.

Solution: the dynamics can be speeded up by:

$$
F^{2^{k}}(z)=(-\lambda)^{k} F\left(z / \lambda^{k}\right), \quad|z|<C \lambda^{k}
$$

For z with $\mathrm{d}\left(z, J_{F}\right) \approx 2^{-n}$ polynomial number of speeded up iterations is sufficient to escape ϵ-neighborhood of J_{F}. Moreover, the distortion of the iterate is bounded near z.

We used the algorithms designed for computing J_{F} in the computer-assisted proof of

Theorem (Dudko-Sutherland 17)

The Julia set J_{F} has Hausdorff dimension less than two (and therefore its Lebesgue area is zero).

Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there exist constants $C, \gamma>0$ such that the following holds: for any critical point $c \in J_{f}$ of f whose forward orbit does not contain any critical points one has:

$$
\left|D f^{n}(f(c))\right| \geqslant C e^{\gamma n} \text { for any } n \in \mathbb{N} .
$$

Collet-Eckmann maps

Definition

A non-hyperbolic rational map f is called Collet-Eckmann if there exist constants $C, \gamma>0$ such that the following holds: for any critical point $c \in J_{f}$ of f whose forward orbit does not contain any critical points one has:

$$
\left|D f^{n}(f(c))\right| \geqslant C e^{\gamma n} \text { for any } n \in \mathbb{N} .
$$

Theorem (Avila-Moreira 05)
For almost every real parameter c the map $f_{c}(z)=z^{2}+c$ is either Collet-Eckmann or hyperbolic.

Exponential Shrinking of Components

Definition

A rational map f satisfies Exponential Shrinking of Components (ESC) condition if there exists $\lambda<1$ and $r>0$ such that for every $n \in \mathbb{N}$, any $x \in J_{f}$ and any connected component W of $f^{-n}\left(U_{r}(x)\right)$ one has $\operatorname{diam}(W)<\lambda^{n}$.

Exponential Shrinking of Components

Definition

A rational map f satisfies Exponential Shrinking of Components (ESC) condition if there exists $\lambda<1$ and $r>0$ such that for every $n \in \mathbb{N}$, any $x \in J_{f}$ and any connected component W of $f^{-n}\left(U_{r}(x)\right)$ one has $\operatorname{diam}(W)<\lambda^{n}$.

Theorem (Przytycki-Rivera-Letelier-Smirnov 03)
Collet-Eckmann condition implies Exponential Shrinking of Components condition.

Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)
For each $d \geqslant 2$ there exists an oracle Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f satisfying ESC, which, given a certain non-uniform information, computes J_{f} in polynomial time.

Poly-time computability of CE Julia sets

Theorem (Dudko-Yampolsky 17)
For each $d \geqslant 2$ there exists an oracle Turing Machine \mathcal{M} with an oracle for the coefficients of a rational map f satisfying ESC, which, given a certain non-uniform information, computes J_{f} in polynomial time.

Corollary

For almost every real value of the parameter c, the Julia set J_{c} is poly-time.

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon>0$ and $C>0$ such that for any point z with $\mathrm{d}\left(z, J_{f}\right) \approx 2^{-n}$ one has

$$
\mathrm{d}\left(f^{C n}(z), J_{f}\right)>\epsilon
$$

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon>0$ and $C>0$ such that for any point z with $\mathrm{d}\left(z, J_{f}\right) \approx 2^{-n}$ one has

$$
\mathrm{d}\left(f^{C n}(z), J_{f}\right)>\epsilon
$$

Problem: $f^{i}(z)$ can be close to critical points many times for $0 \leqslant i \leqslant C n$. Therefore, the distortion of $f^{C n}$ near z cannot be bounded by a constant.

Distance estimator for CE maps

By definition, for an ESC map f one can find $\epsilon>0$ and $C>0$ such that for any point z with $\mathrm{d}\left(z, J_{f}\right) \approx 2^{-n}$ one has

$$
\mathrm{d}\left(f^{C n}(z), J_{f}\right)>\epsilon
$$

Problem: $f^{i}(z)$ can be close to critical points many times for $0 \leqslant i \leqslant C n$. Therefore, the distortion of $f^{C n}$ near z cannot be bounded by a constant.

Solution: we show that $f^{i}(z), 0 \leqslant i \leqslant C n$, approach critical points at most $K \sqrt{n}$ times and the distortion of $f^{C n}$ near z is bounded by $M^{\sqrt{n}}$. This allows to estimate $\mathrm{d}\left(z, J_{F}\right)$ up to $M^{\sqrt{n}}$.

Other results

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).

Other results

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).

Other results

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).
- There exists a computable $c \in \mathbb{C}$ and a computable angle $\alpha \in \mathbb{R}$ such that the impression of the external angle corresponding to α is non-computable (Binder-Rojas-Yampolsky 15).

Other results

- Filled Julia sets of polynomials are computable (Braverman-Yampolsky 08).
- Brolin-Lyubich measure of every rational map is computable (Binder-Braverman-Rojas-Yampolsky 11).
- There exists a computable $c \in \mathbb{C}$ and a computable angle $\alpha \in \mathbb{R}$ such that the impression of the external angle corresponding to α is non-computable (Binder-Rojas-Yampolsky 15).
- There exists a (natural) family of cubic polynomials for which the connectedness locus (Mandelbrot-like set) is non-computable (Coronel-Rojas-Yampolsky 17).

Open questions

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?

Open questions

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (i.e.with multiplier $\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, non-linearizable) of tractable computational complexity?

Open questions

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (i.e.with multiplier $\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, non-linearizable) of tractable computational complexity?
- Are Julia sets of all Feigenbaum maps (infinitely renormalizable with bounded combinatorics and a priori bounds) poly-time?

Open questions

- Is it true that for almost all a) quadratic, b) polynomial, c) rational functions the Julia set is poly-time?
- Does there exists a quadratic Julia set with a Cremer fixed point (i.e.with multiplier $\exp (2 \pi i \theta), \theta \in \mathbb{R} \backslash \mathbb{Q}$, non-linearizable) of tractable computational complexity?
- Are Julia sets of all Feigenbaum maps (infinitely renormalizable with bounded combinatorics and a priori bounds) poly-time?
- What can be said about computability and computational complexity of Julia sets (or escaping, or fast escaping sets) of transcendental entire maps?

Thank you!

