Cantor bouquets in spiders' webs

Yannis Dourekas
July 3, 2018
The Open University

Basic definitions

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a transcendental entire function.

The Fatou set, $F(f)$, is the set of points for which there is a neighbourhood where the family of iterates is equicontinuous.

The Julia set, $J(f)$, is the complement of the Fatou set.

The escaping set, $I(f)$, is the set of points that tend to infinity under iteration.

Spiders' webs

Definition

A set $E \subset \mathbb{C}$ is called a spider's web if it is connected and there exists a sequence of bounded simply connected domains G_{n} with $G_{n} \subset G_{n+1}$ for $n \in \mathbb{N}, \partial G_{n} \subset E$ for $n \in \mathbb{N}$, and $\cup_{n \in \mathbb{N}} G_{n}=\mathbb{C}$.

Examples of functions of regular growth whose escaping sets (and many of their Julia sets) are spiders' webs (Rippon \& Stallard 2012):

- functions of order $\rho<1 / 2$, with

$$
\rho=\limsup _{r \rightarrow \infty} \frac{\log \log \max _{|z|=r}|f(z)|}{\log r} ;
$$

- functions of finite order with Fabry gaps; and
- many functions exhibiting the pits effect.

Cantor bouquets

Definition

Roughly speaking, the Cartesian product of a Cantor set with the closed half-line $[0, \infty)$. The points in the Cantor set are called the endpoints, with each the curves being called a hair.

Examples of functions that admit Cantor bouquets in their Julia sets:

- λe^{z} for $0<\lambda<1 / e, \mu \sin z$ for $0<\mu<1$ (Devaney \& Tangerman 1986);
- certain functions with a bounded set of critical and asymptotic values, i.e. in the Eremenko-Lyubich class, (e.g. Barański, Jarque, Rempe 2011); and
- $\lambda e^{z}, \lambda \in \mathbb{C}^{*}$ (Bodelón, Devaney, Hayes, Roberts, Goldberg, Hubbard 1999).

Cantor bouquets and spiders' webs

Part of the escaping set of
$z \mapsto \frac{1}{4} e^{z}$.

A Cantor bouquet.

Part of the escaping set of $z \mapsto \frac{1}{2}\left(\cos z^{1 / 4}+\cosh z^{1 / 4}\right)$.

A spider's web.

The case λe^{z} for $0<\lambda<1 / e$

Let $E(z)=\lambda e^{z}$ for some $0<\lambda<1 / e$.

- E has two fixed points; $0<q<1$ is attracting and $p>1$ is repelling.
- All points z with $\operatorname{Re}<p$ lie in the basin of attraction of q, which is open and dense in \mathbb{C}.
- $J(E)$ is the complement of this basin and a Cantor bouquet, consisting of uncountably many, pairwise disjoint curves.

The case λe^{z} for $0<\lambda<1 / e$

We can locate a Cantor bouquet in this case as follows.

- For fixed $N \in \mathbb{N}$, define $2 N+1$ horizontal half-strips of width 2π in the right half-plane; $\left\{T_{k}: k=-N, \ldots, N\right\}$.
- Let Λ_{N} be the set of points that stay in $\cup_{|k| \leq N} T_{k}$ under iteration. The sequence of integers $s=s_{0} s_{1} \ldots$ defined by

$$
E^{n}(z) \in T_{s_{n}}
$$

is called the address of $z \in \Lambda_{N}$.

- To each address with $\left|s_{j}\right| \leq N$ for all $j \in \mathbb{N}$, there corresponds a unique curve in Λ_{N} with the property that each point in this curve shares the same address.

Cantor bouquets in a spider's web

We define the family of transcendental entire functions

$$
\mathcal{E}=\cup_{n \geq 3}\left\{f: f(z)=\sum_{k=0}^{n-1} \exp \left(\omega_{n}^{k} z\right)\right\}
$$

where $\omega_{n}=\exp (2 \pi i / n)$ is an nth root of unity.

Theorem (Sixsmith 2015)

Let $f \in \mathcal{E}$. Then $I(f)$ and $J(f)$ are spiders' webs of positive area.

We prove the following:
Theorem
Let $f \in \mathcal{E}$. Then there exist Cantor bouquets inside $J(f)$.

Curves are in the Julia set

Lemma (Sixsmith 2015)

Suppose that f is a transcendental entire function and that $z_{0} \in I(f)$. Set $z_{n}=f^{n}\left(z_{0}\right)$, for $n \in \mathbb{N}$. Suppose that there exist $\lambda>1$ and $N \geq 0$ such that

$$
f\left(z_{n}\right) \neq 0 \quad \text { and } \quad\left|z_{n} \frac{f^{\prime}\left(z_{n}\right)}{f\left(z_{n}\right)}\right| \geq \lambda, \quad \text { for } n \geq N
$$

Then either z_{0} is in a multiply connected Fatou component of f, or $z_{0} \in J(f)$.

