Universal constraints on semigroups of hyperbolic isometries

Argyris Christodoulou

The Open University

CAFT 2018

Problem and Motivation

Determine all the finite collections of hyperbolic isometries f_1, f_2, \ldots, f_n for which the semigroup $\langle f_1, f_2, \ldots, f_n \rangle$ satisfies certain discreteness properties.

Problem and Motivation

Determine all the finite collections of hyperbolic isometries f_1, f_2, \ldots, f_n for which the semigroup $\langle f_1, f_2, \ldots, f_n \rangle$ satisfies certain discreteness properties.

A. Avila, J. Bochi and J.-C. Yoccoz, Uniformly hyperbolic finite-valued $SL(2, \mathbb{R})$ -cocycles, Comment. Math. Helv. **85** (2010), no. 4, 813–884.

M. Jacques, I. Short, *Dynamics of hyperbolic isometries*, available at https://arxiv.org/abs/1609.00576.

Hyperbolic geometry

Hyperbolic geometry

Isometries of the hyperbolic plane:

$$z\mapsto e^{i heta}rac{z-z_0}{1-\overline{z_0}z}, ext{ where } heta\in\mathbb{R}, z_0\in\mathbb{D}$$

Classification of Möbius transformations

hyperbolic

one fixed point inside

one fixed point on the boundary

two fixed points on the boundary

Classification of Möbius transformations

hyperbolic

one fixed point inside

one fixed point on the boundary

two fixed points on the boundary

Classification of Möbius transformations

parabolic

hyperbolic

one fixed point inside

one fixed point on the boundary

two fixed points on the boundary

Definition

The *translation length* of a hyperbolic transformation f is the distance $\rho(f(w), w)$, for any point w on the axis of f.

Definition

In this talk, a *semigroup* is a collection of Möbius transformations that is closed under composition.

Definition

In this talk, a *semigroup* is a collection of Möbius transformations that is closed under composition.

Definition

A semigroup is said to be *discrete* if it has no accumulation points in the Möbius group.

Definition

In this talk, a *semigroup* is a collection of Möbius transformations that is closed under composition.

Definition

A semigroup is said to be *discrete* if it has no accumulation points in the Möbius group.

Definition

A semigroup S is called *semidiscrete* if the identity is not an accumulation point of S.

Definition

In this talk, a *semigroup* is a collection of Möbius transformations that is closed under composition.

Definition

A semigroup is said to be *discrete* if it has no accumulation points in the Möbius group.

Definition

A semigroup S is called *semidiscrete* if the identity is not an accumulation point of S.

Example. A semidiscrete semigroup that is not discrete.

Finitely-generated Semigroups

Definition

A semigroup S is called *finitely-generated* if there exists a finite collection of Möbius transformations \mathcal{F} such that every element of S can be written as a composition of elements of \mathcal{F} .

Finitely-generated Semigroups

Definition

A semigroup S is called *finitely-generated* if there exists a finite collection of Möbius transformations \mathcal{F} such that every element of S can be written as a composition of elements of \mathcal{F} .

The transformations in \mathcal{F} are called the *generators* of S.

Finitely-generated Semigroups

Definition

A semigroup S is called *finitely-generated* if there exists a finite collection of Möbius transformations \mathcal{F} such that every element of S can be written as a composition of elements of \mathcal{F} .

The transformations in \mathcal{F} are called the *generators* of S.

Theorem (Jacques-Short, 2017)

Let S be a finitely-generated semigroup. If there exists a non-trivial closed subset X of $\overline{\mathbb{D}}$ that is mapped strictly inside itself by each generator, then S is semidiscrete.

Constraints on the translation lengths

Theorem

Suppose that S is a semigroup generated by the hyperbolic transformations f_1, f_2, \ldots, f_n , and let τ_i be the translation length of f_i . There exist $\varepsilon > 0$ and M > 0 such that:

(i) if $\tau_i > M$, for all $i \in \{1, ..., n\}$, then S is semidiscrete,

(ii) if $\tau_j, \tau_k < \varepsilon$, for some $j, k \in \{1, ..., n\}$, then S is not semidiscrete.

Constraints on the translation lengths

Theorem

Suppose that S is a semigroup generated by the hyperbolic transformations f_1, f_2, \ldots, f_n , and let τ_i be the translation length of f_i . There exist $\varepsilon > 0$ and M > 0 such that:

(i) if $\tau_i > M$, for all $i \in \{1, ..., n\}$, then S is semidiscrete,

(ii) if $\tau_j, \tau_k < \varepsilon$, for some $j, k \in \{1, ..., n\}$, then S is not semidiscrete.

The numbers ε and M depend only on the geometric configuration of the axes of the generators.

• What happens if $\varepsilon < \tau_i < M$?

- What happens if $\varepsilon < \tau_i < M$?
- Discrete semigroups

- What happens if $\varepsilon < \tau_i < M$?
- Discrete semigroups

- What happens if $\varepsilon < \tau_i < M$?
- Discrete semigroups

X if
$$\tau_i > M$$
, for all $i = 1, ..., n$, then S is *discrete*.