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What do we see?

The Julia set J (P) of P(z) = z2 + i (= set of points with
bounded orbit under iteration).
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What do we really see?

The Julia set J (P) of P(z) = z2 + i is:

a dendrite, i.e., a locally connected continuum with empty
interior that does not separate the plane.

Follows from non-trivial, but standard facts in complex
dynamics, because P is postcritically-finite and has no finite
periodic critical points:

0 // i // −1 + i
%%

−i
ee

a continuum tree, i.e., a locally connected, connected,
compact metric space s.t. any two points can be joined by a
unique arc.
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Continuum trees

(Continuum) trees appear in various contexts:

as Julia sets,

as attractors of iterated function systems (e.g., the
CSST=continuum self-similar tree),

in probabilistic models (e.g., the CRT=continuum random
tree).
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CSST T (=continuum self-similar tree)
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CSST T

The CSST T is:

a geodesic continuum tree (as an abstract metric space).

an attractor of an iterated function system (as a subset of the
plane). Define

f1(z) = 1
2z −

i
2 , f2(z) = −1

2 z̄ + i
2 , f3(z) = i

2 z̄ + 1
2 ,

Then T ⊆ C is the unique non-empty compact set satisfying

T = f1(T) ∪ f2(T) ∪ f3(T).

So T is the attractor of the iterated function system
{f1, f2, f3} in the plane.
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Topological characterization of the CSST

Theorem (B.-Huy Tran 2018; folklore)

A continuum tree T is homeomorphic to the CCST T iff all branch
points of T have order 3 and they are dense in T .

Proof: ⇒: Looks obvious, but is somewhat involved if one defines
T as an attractor of an iterated function system.

⇐: For each level n ∈ N carefully cut T into 3n pieces.
Label pieces by words in a finite alphabet to align with pieces of T.
Use general lemma to obtain a homeomorphism.
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Lemma providing a homeomorphism

Let (X , dX ) and (Y , dY ) be compact metric spaces. Suppose that
for each level n ∈ N, the space X admits a decomposition
X =

⋃Mn
i=1 Xn,i as a finite union of non-empty compact subsets Xn,i

with the following properties:

(i) Each set Xn+1,j is the subset of some set Xn,i .
(ii) Each set Xn,i is equal to the union of some of the sets Xn+1,j .
(iii) max1≤i≤Mn diam(Xn,i )→ 0 as n→∞.

Suppose that for n ∈ N the space Y admits similar decompositions
Y =

⋃Mn
i=1 Yn,i with properties analogous to (i)–(iii) such that

Xn+1,j ⊆ Xn,i if and only if Yn+1,j ⊆ Yn,i (1)

and
Xn,i ∩ Xn,j 6= ∅ if and only if Yn,i ∩ Yn,j 6= ∅ (2)

for all n, i , j .
Then there exists a unique homeomorphism f : X → Y such that
f (Xn,i ) = Yn,i for all n and i . In particular, the spaces X and Y
are homeomorphic.
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Decomposition of T into pieces

There are two type of pieces X : end-pieces (with one distinguished
leaf) and arc-pieces (with two distinguished leaves and hence a
distinguished arc α ⊆ X ).

Each end-piece X is cut into three children by using a branch point
p ∈ X of largest weight w(p) in T .

Each arc piece X is cut into three children by using a branch point
p ∈ α that is contained in the distinguished arc α of X and has
largest weight w(p) in T among these branch points.

w(p) = diameter of third largest component of T\{p}.
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CRT (=continuum random tree)

The CRT is a random geodesic continuum tree T = T (ω)
constructed from Brownian excursion.

If e = e(ω) : [0, 1]→ [0,∞) is a sample of Brownian excursion,
define

d(s, t) = e(s) + e(t)− 2 min
u∈[s,t]

e(u).

Then T = [0, 1]/ ∼, where

s ∼ t :⇔ d(s, t) = 0

⇔ e(s) = e(t) = min
u∈[s,t]

e(u).
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Brownian excursion
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Topology of the CRT

Problem (Curien 2014)

Are two independent samples of the CRT almost surely
homeomorphic?

Theorem (B.-Tran 2018)

The CRT is almost surely homeomorphic to the CSST.

Actually, this theorem was essentially proved earlier by Croyden
and Hambly in 2008.

For the previous and other results on the topology of trees see:
M. Bonk and Huy Tran, The continuum self-similar tree, Preprint,
March 2018, on arXiv.
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Quasisymmetries

Let (X , dX ) and (Y , dY ) be metric spaces, and f : X → Y a
homeomorphism.
The map f is quasisymmetric (=qs) iff there exists a distortion
function η : [0,∞)→ [0,∞) s.t.

dY (f (x), f (y))

dY (f (x), f (z))
≤ η

(
dX (x , y)

dX (x , z)

)
,

whenever x , y , z are distinct points in X .
If there exists a quasisymmetry f : X → Y , then X and Y are said
to be qs-equivalent.
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Geometry of a quasisymmetric map

R2/R1 ≤ Const.
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Remarks

f is quasisymmetric if it maps balls to “roundish” sets of
uniformly controlled “eccentricity”.

Quasisymmetry global version of quasiconformality.

bi-Lipschitz ⇒ qs ⇒ qc.

In Rn, n ≥ 2: qs ⇔ qc.
Also true for “Loewner spaces” (Heinonen-Koskela).
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Problems about the quasiconformal geometry of trees

When can one promote a homeomorphism between trees to a
quasisymmetry?

Is there a characterization of the CSST up to qs-equivalence?

What can one say about the qc-geometry of the CRT or Julia
sets of postcritically-finite polynomials?

Are there some canonical models for certain classes of trees
up to qs-equivalence (uniformization problem)?

21 / 26



Qs-characterization of quasi-arcs

Theorem (Tukia-Väisälä 1980)

Let α be a metric arc. Then α is qs-equivalent to [0, 1] iff α is
doubling and of bounded turning.

A metric space X is doubling is there exists N ∈ N such that every
ball in X can be covered by N (or fewer) balls of half the radius.

A metric space (X , d) is of bounded turning if there exists K > 0
such that for all points x , y ∈ X there exists a continuum γ with
x , y ∈ γ and

diam γ ≤ Kd(x , y).
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Qs-uniformization of quasi-trees

Theorem (B.-Meyer)

Let T be a quasi-tree, i.e., a tree that is doubling and of bounded
turning. Then T is qs-equivalent to a geodesic tree.

A tree (T , d) is geodesic if for all x , y ∈ T ,

length [x , y ] = d(x , y).

Note: in a quasi-tree we have diam [x , y ] � d(x , y).

Proof of Theorem: Decompose the metric space (T , d) into
pieces, and carefully redefine metric d by assigning new diameters
to these pieces to obtain a geodesic metric % on T . With suitable
choices, the identity map (T , d)→ (T , %) is a quasisymmetry.
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Further results I

Theorem (B.-Tran)

The Julia set J (z2 + i) is homeomorphic to the CSST.

Proof: Study the the Hubbard tree (=convex hull of critical and
postcritical points in Julia set).

Theorem (B.-Tran 2015)

The Julia set J (z2 + i) is qs-equivalent to the CSST.

Proof: Carefully cut T into pieces with good geometric control
and align with pieces of CCST. Geometric control comes from
conformal elevator techniques.

A better proof would follow from a qs-characterization of the
CSST (open problem!).
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Further results II

Theorem (B.-Tran)

Let P be a postcritically-finite polynomial. If its Julia set J (P) is
homeomorphic to the CSST, then it is qs-equivalent to the CSST.

Proof: Same ideas.
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Quasiconformal geometry of the CRT

Question

Is the CRT almost surely qs-equivalent to the CSST?

No, because the CSST is a quasi-tree, and in particular doubling,
while the CRT is not doubling, and doubling is preserved under
quasisymmetries.

Open Problem (very hard!)

Are two independent samples of the CRT almost surely
qs-equivalent?

General theme: Geometric uniqueness of probabilistic models.
Known (up to quasi-isometric equivalence) for Bernoulli
percolation on Z, Poisson point process on R (Basu-Sly).
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