Polynomial Inequalities in the Complex Plane

Vladimir Andrievskii

Kent State University
Crete, 2018

Remez-type Inequalities

Remez '36:

$$
\left\|p_{n}\right\|_{I} \leq T_{n}\left(\frac{2+s}{2-s}\right) \leq\left(\frac{\sqrt{2}+\sqrt{s}}{\sqrt{2}-\sqrt{s}}\right)^{n} \leq e^{c \sqrt{s} n}
$$

for every real polynomial p_{n} of degree at most n such that

$$
\left|\left\{x \in I:\left|p_{n}(x)\right| \leq 1\right\}\right| \geq 2-s, \quad 0<s<2,
$$

where $I:=[-1,1]$ and T_{n} is the Chebyshev polynomial of degree n.

Let now $\Gamma \subset \mathbb{C}$ be an arbitrary bounded Jordan arc or curve.

Remez-type Inequalities

Remez '36:

$$
\left\|p_{n}\right\|_{I} \leq T_{n}\left(\frac{2+s}{2-s}\right) \leq\left(\frac{\sqrt{2}+\sqrt{s}}{\sqrt{2}-\sqrt{s}}\right)^{n} \leq e^{c \sqrt{s} n}
$$

for every real polynomial p_{n} of degree at most n such that

$$
\left|\left\{x \in I:\left|p_{n}(x)\right| \leq 1\right\}\right| \geq 2-s, \quad 0<s<2,
$$

where $I:=[-1,1]$ and T_{n} is the Chebyshev polynomial of degree n.
Set

$$
\Pi(p):=\{z \in \mathbb{C}:|p(z)|>1\}, \quad p \in \mathbb{P}_{n} .
$$

Let now $\Gamma \subset \mathbb{C}$ be an arbitrary bounded Jordan arc or curve.

Remez-type Inequalities

For $V \subset \Gamma$ we consider its covering $U=\cup_{j=1}^{m} U_{j} \supset V$ by a finite number of subarcs U_{j} of Γ. Set

$$
\sigma_{\Gamma}(V):=\inf \sum_{j=1}^{m} \operatorname{diam} U_{j}
$$

where the infimum is taken over all finite coverings of V.
Theorem (A. \& Ruscheweyh '05). Let Γ be an arbitrary bounded Jordan arc or curve. If $p \in \mathbb{P}_{n}$ and

then

Remez-type Inequalities

For $V \subset \Gamma$ we consider its covering $U=\cup_{j=1}^{m} U_{j} \supset V$ by a finite number of subarcs U_{j} of Γ. Set

$$
\sigma_{\Gamma}(V):=\inf \sum_{j=1}^{m} \operatorname{diam} U_{j}
$$

where the infimum is taken over all finite coverings of V.
Theorem (A. \& Ruscheweyh '05). Let Γ be an arbitrary bounded Jordan arc or curve. If $p \in \mathbb{P}_{n}$ and

$$
\frac{\sigma_{\Gamma}(\Gamma \cap \Pi(p))}{\operatorname{diam} \Gamma}=: u<\frac{1}{4},
$$

then

$$
\|p\|_{\Gamma} \leq\left(\frac{1+2 \sqrt{u}}{1-2 \sqrt{u}}\right)^{n} \leq e^{c \sqrt{u} n}
$$

Weighted Remez-type Inequalities

Erdélyi '92: Assume that for $p_{n} \in \mathbb{P}_{n}$ and $\mathbb{T}:=\{z:|z|=1\}$ we have

$$
\left|\left\{z \in \mathbb{T}:\left|p_{n}(z)\right|>1\right\}\right| \leq s, \quad 0<s \leq \frac{\pi}{2}
$$

Then,

$$
\left\|p_{n}\right\|_{\mathbb{T}} \leq e^{2 s n}, \quad 0<s \leq \frac{\pi}{2}
$$

A \& Ruscheweyh '05:
Let Γ be quasismooth (in the sense of Lavrentiev), i.e.,
where $\Gamma\left(z_{1}, z_{2}\right)$ is the shorter arc of Γ between z_{1} and z_{2} and $\Lambda_{\Gamma} \geq 1$
is a constant.

Weighted Remez-type Inequalities

Erdélyi '92: Assume that for $p_{n} \in \mathbb{P}_{n}$ and $\mathbb{T}:=\{z:|z|=1\}$ we have

$$
\left|\left\{z \in \mathbb{T}:\left|p_{n}(z)\right|>1\right\}\right| \leq s, \quad 0<s \leq \frac{\pi}{2}
$$

Then,

$$
\left\|p_{n}\right\|_{\mathbb{T}} \leq e^{2 s n}, \quad 0<s \leq \frac{\pi}{2}
$$

A \& Ruscheweyh '05:

Let Γ be quasismooth (in the sense of Lavrentiev), i.e.,

$$
\left|\Gamma\left(z_{1}, z_{2}\right)\right| \leq \Lambda_{\Gamma}\left|z_{1}-z_{2}\right|, \quad z_{1}, z_{2} \in \Gamma,
$$

where $\Gamma\left(z_{1}, z_{2}\right)$ is the shorter arc of Γ between z_{1} and z_{2} and $\Lambda_{\Gamma} \geq 1$ is a constant.

Remez-type Inequalities

Let Ω be the unbounded component of $\overline{\mathbb{C}} \backslash \Gamma, \Phi: \Omega \rightarrow \mathbb{D}^{*}$ the Riemann conformal mapping.

For $\delta>0$, set

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\} .
$$

Let the function $\delta(t)=\delta(t, \Gamma), t>0$ be defined by $\operatorname{dist}\left(\Gamma, \Gamma_{\delta(t)}\right)=t$.
If for $p_{n} \in \mathbb{P}_{n}$.

then

$$
\left\|p_{n}\right\|_{r} \leq \exp (c \delta(s) n)
$$

holds with a constant $c=c(\Gamma)$.

Remez-type Inequalities

Let Ω be the unbounded component of $\overline{\mathbb{C}} \backslash \Gamma, \Phi: \Omega \rightarrow \mathbb{D}^{*}$ the Riemann conformal mapping.

For $\delta>0$, set

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\} .
$$

Let the function $\delta(t)=\delta(t, \Gamma), t>0$ be defined by $\operatorname{dist}\left(\Gamma, \Gamma_{\delta(t)}\right)=t$.
If for $p_{n} \in \mathbb{P}_{n}$,

then

$$
\left\|p_{n}\right\|_{r} \leq \exp (c \delta(s) n)
$$

holds with a constant $c=c(\Gamma)$.

Remez-type Inequalities

Let Ω be the unbounded component of $\overline{\mathbb{C}} \backslash \Gamma, \Phi: \Omega \rightarrow \mathbb{D}^{*}$ the Riemann conformal mapping.

For $\delta>0$, set

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\} .
$$

Let the function $\delta(t)=\delta(t, \Gamma), t>0$ be defined by $\operatorname{dist}\left(\Gamma, \Gamma_{\delta(t)}\right)=t$. If for $p_{n} \in \mathbb{P}_{n}$,

$$
\left|\left\{z \in \Gamma:\left|p_{n}(z)\right|>1\right\}\right| \leq s<\frac{1}{2} \operatorname{diam} \Gamma
$$

then

$$
\left\|p_{n}\right\|_{\Gamma} \leq \exp (c \delta(s) n)
$$

holds with a constant $c=c(\Gamma)$.

Remez-type Inequalities

A finite Borel measure ν supported on Γ is an A_{∞} measure (briefly $\left.\nu \in A_{\infty}(\Gamma)\right)$ if there exists a constant $\lambda_{\nu} \geq 1$ such that for any arc $J \subset \Gamma$ and a Borel set $S \subset J$ satisfying $|J| \leq 2|S|$ we have

$$
\nu(J) \leq \lambda_{\nu} \nu(S)
$$

The measure defined by the arclength on Γ is the A_{∞} measure.
Lavrentiev '36: the equilibrium measure $\mu_{\Gamma} \in A_{\infty}(\Gamma)$.
Theorem (A '17) Let $\nu \in A_{\infty}(\Gamma), 1 \leq p<\infty$, and let $E \subset \Gamma$ be a Borel set. Then for $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$, we have

provided that $0<|E| \leq s<(\operatorname{diam} \Gamma) / 2$, where the constants c_{1} and c_{2} depend only on Γ, λ_{ν}, p.

Remez-type Inequalities

A finite Borel measure ν supported on Γ is an A_{∞} measure (briefly $\nu \in A_{\infty}(\Gamma)$) if there exists a constant $\lambda_{\nu} \geq 1$ such that for any arc $J \subset \Gamma$ and a Borel set $S \subset J$ satisfying $|J| \leq 2|S|$ we have

$$
\nu(J) \leq \lambda_{\nu} \nu(S)
$$

The measure defined by the arclength on Γ is the A_{∞} measure.
Lavrentiev '36: the equilibrium measure $\mu_{\Gamma} \in A_{\infty}(\Gamma)$.
Theorem (A '17) Let $\nu \in A_{\infty}(\Gamma), 1 \leq p<\infty$, and let $E \subset \Gamma$ be a Borel set. Then for $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$, we have

provided that $0<|E| \leq s<(\operatorname{diam} \Gamma) / 2$, where the constants c_{1} and c_{2} depend only on Γ, λ_{ν}, p.

Remez-type Inequalities

A finite Borel measure ν supported on Γ is an A_{∞} measure (briefly $\left.\nu \in A_{\infty}(\Gamma)\right)$ if there exists a constant $\lambda_{\nu} \geq 1$ such that for any arc $J \subset \Gamma$ and a Borel set $S \subset J$ satisfying $|J| \leq 2|S|$ we have

$$
\nu(J) \leq \lambda_{\nu} \nu(S)
$$

The measure defined by the arclength on Γ is the A_{∞} measure.
Lavrentiev '36: the equilibrium measure $\mu_{\Gamma} \in A_{\infty}(\Gamma)$.
Theorem (A '17) Let $\nu \in A_{\infty}(\Gamma), 1 \leq p<\infty$, and let $E \subset \Gamma$ be a Borel set. Then for $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$, we have

provided that $0<|E| \leq s<(\operatorname{diam} \Gamma) / 2$, where the constants c_{1} and c_{2} depend only on Γ, λ_{ν}, p.

Remez-type Inequalities

A finite Borel measure ν supported on Γ is an A_{∞} measure (briefly $\nu \in A_{\infty}(\Gamma)$) if there exists a constant $\lambda_{\nu} \geq 1$ such that for any arc $J \subset \Gamma$ and a Borel set $S \subset J$ satisfying $|J| \leq 2|S|$ we have

$$
\nu(J) \leq \lambda_{\nu} \nu(S)
$$

The measure defined by the arclength on Γ is the A_{∞} measure.
Lavrentiev '36: the equilibrium measure $\mu_{\Gamma} \in A_{\infty}(\Gamma)$.
Theorem (A '17) Let $\nu \in A_{\infty}(\Gamma), 1 \leq p<\infty$, and let $E \subset \Gamma$ be a Borel set. Then for $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$, we have

$$
\int_{\Gamma}\left|p_{n}\right|^{p} d \nu \leq c_{1} \exp \left(c_{2} \delta(s) n\right) \int_{\Gamma \backslash E}\left|p_{n}\right|^{p} d \nu
$$

provided that $0<|E| \leq s<(\operatorname{diam} \Gamma) / 2$, where the constants c_{1} and c_{2} depend only on Γ, λ_{ν}, p.

Remez-type Inequalities

The sharpness:
Theorem (A '17) Let $0<s<\operatorname{diam} \Gamma$ and $1 \leq p<\infty$. Then there exist an arc $E_{s} \subset \Gamma$ with $\left|E_{s}\right|=s$ as well as constants $\varepsilon=\varepsilon(\Gamma)>0$ and $n_{0}=n_{0}(s, \Gamma, p) \in \mathbb{N}$ such that for any $n>n_{0}$ there is a polynomial $p_{n, s} \in \mathbb{P}_{n}$ satisfying

$$
\int_{\Gamma}\left|p_{n, s}\right|^{p} d s \geq \exp (\varepsilon \delta(s) n) \int_{\Gamma \backslash E_{s}}\left|p_{n, s}\right|^{p} d s
$$

> If in the definition of the A_{∞} measure we ask S to be also an arc, then ν is called a doubling measure. Mastroianni \& Totik '00 constructed an example showing that the weighted Remez-type inequality may not be true in the case of doubling measures.

Remez-type Inequalities

The sharpness:
Theorem (A '17) Let $0<s<\operatorname{diam} \Gamma$ and $1 \leq p<\infty$. Then there exist an arc $E_{s} \subset \Gamma$ with $\left|E_{s}\right|=s$ as well as constants $\varepsilon=\varepsilon(\Gamma)>0$ and $n_{0}=n_{0}(s, \Gamma, p) \in \mathbb{N}$ such that for any $n>n_{0}$ there is a polynomial $p_{n, s} \in \mathbb{P}_{n}$ satisfying

$$
\int_{\Gamma}\left|p_{n, s}\right|^{p} d s \geq \exp (\varepsilon \delta(s) n) \int_{\Gamma \backslash E_{s}}\left|p_{n, s}\right|^{p} d s
$$

If in the definition of the A_{∞} measure we ask S to be also an arc, then ν is called a doubling measure. Mastroianni \& Totik '00 constructed an example showing that the weighted Remez-type inequality may not be true in the case of doubling measures.

Weighted L_{p} Bernstein-type Inequalities

The starting point of our analysis are the results of Mastroianni \& Totik '00 as well as Mamedkhanov '86, Mamedkhanov \& Dadashova '09 that extend a classical L_{p} Bernstein inequality to the case of weighted inequalities for trigonometric polynomials and complex algebraic polynomials over a Jordan curve in the complex plane \mathbb{C}.

> Let $\Gamma \subset \mathbb{C}$ be a quasismooth curve and let Ω be the unbounded component of $\overline{\mathbb{C}} \backslash \Gamma$
> Let ν be a nonnegative Borel measure supported on Γ. We assume that ν satisfies the doubling condition

where $c_{\nu} \geq 1$ is a doubling constant.

Weighted L_{p} Bernstein-type Inequalities

The starting point of our analysis are the results of Mastroianni \& Totik '00 as well as Mamedkhanov '86, Mamedkhanov \& Dadashova '09 that extend a classical L_{p} Bernstein inequality to the case of weighted inequalities for trigonometric polynomials and complex algebraic polynomials over a Jordan curve in the complex plane \mathbb{C}.

Let $\Gamma \subset \mathbb{C}$ be a quasismooth curve and let Ω be the unbounded component of $\overline{\mathbb{C}} \backslash \Gamma$.
Let ν be a nonnegative Borel measure supported on Γ. We assume that ν satisfies the doubling condition

$$
\nu(\overline{D(z, 2 \delta)}) \leq c_{\nu} \nu(\overline{D(z, \delta)}), \quad z \in \Gamma, \delta>0,
$$

where $c_{\nu} \geq 1$ is a doubling constant.

Weighted L_{p} Bernstein-type Inequalities

Theorem (A '12) For $1 \leq p<\infty, s \in \mathbb{R}$ and $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$,

$$
\begin{gathered}
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{p+s} d \nu(z) \\
\leq c\left(\Gamma, p, c_{\nu}, s\right) \int_{\Gamma}\left|p_{n}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{s} d \nu(z) .
\end{gathered}
$$

Since the measure $d \nu(z)=|d z|$ satisfies the doubling condition: Corollary (Mamedkhanov \& Dadashova '09) Under the assumptions of the above theorem,

Weighted L_{p} Bernstein-type Inequalities

Theorem (A '12) For $1 \leq p<\infty, s \in \mathbb{R}$ and $p_{n} \in \mathbb{P}_{n}, n \in \mathbb{N}$,

$$
\begin{gathered}
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{p+s} d \nu(z) \\
\leq c\left(\Gamma, p, c_{\nu}, s\right) \int_{\Gamma}\left|p_{n}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{s} d \nu(z) .
\end{gathered}
$$

Since the measure $d \nu(z)=|d z|$ satisfies the doubling condition:
Corollary (Mamedkhanov \& Dadashova '09) Under the assumptions of the above theorem,

$$
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{p+s}|d z| \leq c(\Gamma, p, s) \int_{\Gamma}\left|p_{n}(z)\right|^{p}\left[\rho_{1 / n}(z)\right]^{s}|d z| .
$$

Weighted L_{p} Bernstein-type Inequalities

If Γ is Dini-smooth, then

$$
\rho_{\delta}(z) \asymp \delta, \quad z \in \Gamma, \delta>0 .
$$

Therefore, in this case

$$
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p} d \nu(z) \leq c\left(\Gamma, p, c_{\nu}\right) n^{p} \int_{\Gamma}\left|p_{n}(z)\right|^{p} d \nu(z)
$$

Moreover, writing a trigonometric polynomial T_{n} in the form

$$
T_{n}(x)=e^{-i n x} p_{2 n}\left(e^{i x}\right), \quad p_{2 n} \in \mathbb{P}_{2 n}
$$

> and applying the above theorem with $\Gamma=\{z \in \mathbb{C}:|z|=1\}$ and $\nu\left(e^{i x}\right)=\mu(x)$, we obtain the result of Mastroianni \& Totik '00.

Problem (for trigonometric polynomials Totik '09): under which
condition on a general (not necessary doubling) measure ν does the weighted Bernstein inequality hold for any $p_{n} \in \mathbb{P}_{n}$?
For trigonometric polynomials, see Bondarenko \& Tikhonov '15.

Weighted L_{p} Bernstein-type Inequalities

If Γ is Dini-smooth, then

$$
\rho_{\delta}(z) \asymp \delta, \quad z \in \Gamma, \delta>0 .
$$

Therefore, in this case

$$
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p} d \nu(z) \leq c\left(\Gamma, p, c_{\nu}\right) n^{p} \int_{\Gamma}\left|p_{n}(z)\right|^{p} d \nu(z)
$$

Moreover, writing a trigonometric polynomial T_{n} in the form

$$
T_{n}(x)=e^{-i n x} p_{2 n}\left(e^{i x}\right), \quad p_{2 n} \in \mathbb{P}_{2 n}
$$

and applying the above theorem with $\Gamma=\{z \in \mathbb{C}:|z|=1\}$ and $\nu\left(e^{i x}\right)=\mu(x)$, we obtain the result of Mastroianni \& Totik '00.

Problem (for trigonometric polynomials Totik '09): under which
condition on a general (not necessary doubling) measure ν does the
weighted Bernstein inequality hold for any $p_{n} \in \mathbb{B}$
\square

Weighted L_{p} Bernstein-type Inequalities

If Γ is Dini-smooth, then

$$
\rho_{\delta}(z) \asymp \delta, \quad z \in \Gamma, \delta>0 .
$$

Therefore, in this case

$$
\int_{\Gamma}\left|p_{n}^{\prime}(z)\right|^{p} d \nu(z) \leq c\left(\Gamma, p, c_{\nu}\right) n^{p} \int_{\Gamma}\left|p_{n}(z)\right|^{p} d \nu(z)
$$

Moreover, writing a trigonometric polynomial T_{n} in the form

$$
T_{n}(x)=e^{-i n x} p_{2 n}\left(e^{i x}\right), \quad p_{2 n} \in \mathbb{P}_{2 n}
$$

and applying the above theorem with $\Gamma=\{z \in \mathbb{C}:|z|=1\}$ and $\nu\left(e^{i x}\right)=\mu(x)$, we obtain the result of Mastroianni \& Totik '00.

Problem (for trigonometric polynomials Totik '09): under which condition on a general (not necessary doubling) measure ν does the weighted Bernstein inequality hold for any $p_{n} \in \mathbb{P}_{n}$?
For trigonometric polynomials, see Bondarenko \& Tikhonov '15.

On the Christoffel Function for the Generalized Jacobi Measures on a Quasidisk

For a finite Borel measure ν on \mathbb{C} such that its support is compact and consists of infinitely many points and a parameter $1 \leq p<\infty$, the n-th Christoffel function associated with ν and p, is defined by

$$
\lambda_{n}(\nu, p, z):=\inf _{\substack{p_{n} \in \mathbb{P}_{n} \\ p_{n}(z)=1}} \int\left|p_{n}\right|^{p} d \nu, \quad z \in \mathbb{C} .
$$

This function plays an important role in the theory of orthogonal polynomials, in particular, because of the following Christoffel Variational Principle

where $\pi_{j}(\nu, \cdot)$ is the j-th orthogonal polynomial with respect to the measure ν.

On the Christoffel Function for the Generalized Jacobi Measures on a Quasidisk

For a finite Borel measure ν on \mathbb{C} such that its support is compact and consists of infinitely many points and a parameter $1 \leq p<\infty$, the n-th Christoffel function associated with ν and p, is defined by

$$
\lambda_{n}(\nu, p, z):=\inf _{\substack{p_{n} \in \mathbb{P}_{n} \\ p_{n}(z)=1}} \int\left|p_{n}\right|^{p} d \nu, \quad z \in \mathbb{C} .
$$

This function plays an important role in the theory of orthogonal polynomials, in particular, because of the following Christoffel Variational Principle

$$
\lambda_{n}(\nu, 2, z)=\left(\sum_{j=0}^{n}\left|\pi_{j}(\nu, z)\right|^{2}\right)^{-1}, \quad z \in \mathbb{C},
$$

where $\pi_{j}(\nu, \cdot)$ is the j-th orthogonal polynomial with respect to the measure ν.

Christoffel function

We consider measures supported on the closure \bar{G} of a domain $G \subset \mathbb{C}$ bounded by a Jordan curve $\Gamma:=\partial G$. Let $\Omega:=\overline{\mathbb{C}} \backslash \bar{G}$. The Riemann mapping function $\Phi: \Omega \rightarrow \mathbb{D}^{*}:=\{w:|w|>1\}$ normalized by

$$
\Phi(\infty)=\infty, \quad \Phi^{\prime}(\infty):=\lim _{z \rightarrow \infty} \frac{\Phi(z)}{z}>0
$$

plays an essential role in our results, which from this point of view, can be compared with recent results in Totik '10, '14, Varga '13 where the case of a measure ν supported on a Jordan arc or curve is considered
> as well as with results in Suetin '74, Abdullaev '04, Abdullaev \&
> Deger '09, Gustafsson \& Putinar \& Saff \& Stylianopolos '09
> where orthogonal polynomials with respect to the weighted area type measures (in particular, Bergman polynomials) are siudied'

Christoffel function

We consider measures supported on the closure \bar{G} of a domain $G \subset \mathbb{C}$ bounded by a Jordan curve $\Gamma:=\partial G$. Let $\Omega:=\overline{\mathbb{C}} \backslash \bar{G}$. The Riemann mapping function $\Phi: \Omega \rightarrow \mathbb{D}^{*}:=\{w:|w|>1\}$ normalized by

$$
\Phi(\infty)=\infty, \quad \Phi^{\prime}(\infty):=\lim _{z \rightarrow \infty} \frac{\Phi(z)}{z}>0
$$

plays an essential role in our results, which from this point of view, can be compared with recent results in Totik '10, '14, Varga '13 where the case of a measure ν supported on a Jordan arc or curve is considered
as well as with results in Suetin '74, Abdullaev '04, Abdullaev \& Deger '09, Gustafsson \& Putinar \& Saff \& Stylianopolos '09 where orthogonal polynomials with respect to the weighted area type measures (in particular, Bergman polynomials) are studied.

Christoffel function

Our main attention is paid to the case where G is a bounded quasidisk.
For fixed $z_{j} \in \Gamma:=\partial G$ and $\alpha_{j}>-2, j=1, \ldots, m$, consider the weight function

$$
h(z):=h_{0}(z) \prod_{j=1}^{m}\left|z-z_{j}\right|^{\alpha_{j}}, \quad z \in G,
$$

where for a measurable function h_{0} the inequality

$$
0<C_{h}^{-1} \leq h_{0}(z) \leq C_{h}, \quad z \in G
$$

holds with a constant $C_{h}>1$ depending only on h.
A measure ν supnorted on G and determined by $d \nu=h d m$, where $d m$ stands for the 2-dimensional Lebesgue measure (area) in the plane, is called the generalized Jacobi measure.

Christoffel function

Our main attention is paid to the case where G is a bounded quasidisk.
For fixed $z_{j} \in \Gamma:=\partial G$ and $\alpha_{j}>-2, j=1, \ldots, m$, consider the weight function

$$
h(z):=h_{0}(z) \prod_{j=1}^{m}\left|z-z_{j}\right|^{\alpha_{j}}, \quad z \in G,
$$

where for a measurable function h_{0} the inequality

$$
0<C_{h}^{-1} \leq h_{0}(z) \leq C_{h}, \quad z \in G
$$

holds with a constant $C_{h}>1$ depending only on h.
A measure ν supported on \bar{G} and determined by $d \nu=h d m$, where $d m$ stands for the 2-dimensional Lebesgue measure (area) in the plane, is called the generalized Jacobi measure.

Christoffel function

Our main attention is paid to the case where G is a bounded quasidisk.
For fixed $z_{j} \in \Gamma:=\partial G$ and $\alpha_{j}>-2, j=1, \ldots, m$, consider the weight function

$$
h(z):=h_{0}(z) \prod_{j=1}^{m}\left|z-z_{j}\right|^{\alpha_{j}}, \quad z \in G,
$$

where for a measurable function h_{0} the inequality

$$
0<C_{h}^{-1} \leq h_{0}(z) \leq C_{h}, \quad z \in G
$$

holds with a constant $C_{h}>1$ depending only on h.
A measure ν supported on \bar{G} and determined by $d \nu=h d m$, where $d m$ stands for the 2-dimensional Lebesgue measure (area) in the plane, is called the generalized Jacobi measure.

Christoffel function

Let for $\delta>0$ and $z \in L$,

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\}, \quad \rho_{\delta}(z):=\operatorname{dist}\left(\{z\}, \Gamma_{\delta}\right) .
$$

Theorem (A '17) Let G be a quasidisk, ν be the generalized Jacobi measure, and let $1 \leq p<\infty$. Then for $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $z \in \Gamma$,

holds with $C=C(G, h, p)>1$.
The requirement on G to be a quasidisk cannot be dropped.
The same inequality can be proved if G is replaced by a finite union of quasidisks lying exterior to one other.

Christoffel function

Let for $\delta>0$ and $z \in L$,

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\}, \quad \rho_{\delta}(z):=\operatorname{dist}\left(\{z\}, \Gamma_{\delta}\right) .
$$

Theorem (A '17) Let G be a quasidisk, ν be the generalized Jacobi measure, and let $1 \leq p<\infty$. Then for $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $z \in \Gamma$,

$$
C^{-1} \leq \lambda(\nu, p, z) \rho_{1 / n}(z)^{-2} \prod_{j=1}^{m}\left(\left|z-z_{j}\right|+\rho_{1 / n}(z)\right)^{-\alpha_{j}} \leq C
$$

holds with $C=C(G, h, p)>1$.
The requirement on G to be a quasidisk cannot be dropped.
The same inequality can be proved if G is replaced by a finite union of quasidisks lying exterior to one other.

Christoffel function

Let for $\delta>0$ and $z \in L$,

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\}, \quad \rho_{\delta}(z):=\operatorname{dist}\left(\{z\}, \Gamma_{\delta}\right) .
$$

Theorem (A '17) Let G be a quasidisk, ν be the generalized Jacobi measure, and let $1 \leq p<\infty$. Then for $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $z \in \Gamma$,

$$
C^{-1} \leq \lambda(\nu, p, z) \rho_{1 / n}(z)^{-2} \prod_{j=1}^{m}\left(\left|z-z_{j}\right|+\rho_{1 / n}(z)\right)^{-\alpha_{j}} \leq C
$$

holds with $C=C(G, h, p)>1$.
The requirement on G to be a quasidisk cannot be dropped.
The same inequality can be proved if G is replaced by a finite union of quasidisks lying exterior to one other.

Christoffel function

Let for $\delta>0$ and $z \in L$,

$$
\Gamma_{\delta}:=\{\zeta \in \Omega:|\Phi(\zeta)|=1+\delta\}, \quad \rho_{\delta}(z):=\operatorname{dist}\left(\{z\}, \Gamma_{\delta}\right) .
$$

Theorem (A '17) Let G be a quasidisk, ν be the generalized Jacobi measure, and let $1 \leq p<\infty$. Then for $n \in \mathbb{N}:=\{1,2, \ldots\}$ and $z \in \Gamma$,

$$
C^{-1} \leq \lambda(\nu, p, z) \rho_{1 / n}(z)^{-2} \prod_{j=1}^{m}\left(\left|z-z_{j}\right|+\rho_{1 / n}(z)\right)^{-\alpha_{j}} \leq C
$$

holds with $C=C(G, h, p)>1$.
The requirement on G to be a quasidisk cannot be dropped.
The same inequality can be proved if G is replaced by a finite union of quasidisks lying exterior to one other.

Chebyshev Polynomials

Let $K \subset \mathbb{C}$ be a compact set with $\operatorname{cap}(K)>0$ and let $T_{n}(z)=T_{n}(z, K), n \in \mathbb{N}$ be the n-th Chebyshev polynomial associated with K, i.e., $T_{n}(z)=z^{n}+c_{n-1} z^{n-1}+\ldots+c_{0}, c_{k} \in \mathbb{C}$ is the (unique) monic polynomial which minimizes $\left\|T_{n}\right\|_{K}$ among all monic polynomials of the same degree.

Denote by T_{n} the n-th Chebyshev polynomial with zeros on K.
It is well-known that

be the Widom factors.

Chebyshev Polynomials

Let $K \subset \mathbb{C}$ be a compact set with $\operatorname{cap}(K)>0$ and let $T_{n}(z)=T_{n}(z, K), n \in \mathbb{N}$ be the n-th Chebyshev polynomial associated with K, i.e., $T_{n}(z)=z^{n}+c_{n-1} z^{n-1}+\ldots+c_{0}, c_{k} \in \mathbb{C}$ is the (unique) monic polynomial which minimizes $\left\|T_{n}\right\|_{K}$ among all monic polynomials of the same degree.
Denote by \widetilde{T}_{n} the n-th Chebyshev polynomial with zeros on K.
It is well-known that

be the Widom factors.

Chebyshev Polynomials

Let $K \subset \mathbb{C}$ be a compact set with $\operatorname{cap}(K)>0$ and let $T_{n}(z)=T_{n}(z, K), n \in \mathbb{N}$ be the n-th Chebyshev polynomial associated with K, i.e., $T_{n}(z)=z^{n}+c_{n-1} z^{n-1}+\ldots+c_{0}, c_{k} \in \mathbb{C}$ is the (unique) monic polynomial which minimizes $\left\|T_{n}\right\|_{K}$ among all monic polynomials of the same degree.
Denote by \widetilde{T}_{n} the n-th Chebyshev polynomial with zeros on K. It is well-known that

$$
\begin{gathered}
\left\|\widetilde{T}_{n}\right\|_{K} \geq\left\|T_{n}\right\|_{K} \geq \operatorname{cap}(K)^{n} \\
\lim _{n \rightarrow \infty}\left\|\widetilde{T}_{n}\right\|_{K}^{1 / n}=\lim _{n \rightarrow \infty}\left\|T_{n}\right\|_{K}^{1 / n}=\operatorname{cap}(K)
\end{gathered}
$$

be the Widom factors.

Chebyshev Polynomials

Let $K \subset \mathbb{C}$ be a compact set with $\operatorname{cap}(K)>0$ and let
$T_{n}(z)=T_{n}(z, K), n \in \mathbb{N}$ be the n-th Chebyshev polynomial
associated with K, i.e., $T_{n}(z)=z^{n}+c_{n-1} z^{n-1}+\ldots+c_{0}, c_{k} \in \mathbb{C}$ is the (unique) monic polynomial which minimizes $\left\|T_{n}\right\|_{K}$ among all monic polynomials of the same degree.
Denote by \widetilde{T}_{n} the n-th Chebyshev polynomial with zeros on K. It is well-known that

$$
\begin{gathered}
\left\|\widetilde{T}_{n}\right\|_{K} \geq\left\|T_{n}\right\|_{K} \geq \operatorname{cap}(K)^{n} \\
\lim _{n \rightarrow \infty}\left\|\widetilde{T}_{n}\right\|_{K}^{1 / n}=\lim _{n \rightarrow \infty}\left\|T_{n}\right\|_{K}^{1 / n}=\operatorname{cap}(K)
\end{gathered}
$$

Let

$$
\widetilde{w}_{n}(K):=\frac{\left\|\widetilde{T}_{n}\right\|_{K}}{\operatorname{cap}(K)^{n}}, \quad w_{n}(K):=\frac{\left\|T_{n}\right\|_{K}}{\operatorname{cap}(K)^{n}}
$$

be the Widom factors.

Chebyshev Polynomials

Simon '17: Does the closed domain K bounded by the Koch snowflake obey a Totik-Widom bound, i.e.,

$$
w_{n}(K)=O(1) \quad \text { as } n \rightarrow \infty ?
$$

Theorem (A \& Nazarov '18) Let K be a quasidisk. Then

Widom '69, Totik '12-'15, Totik \& Varga '14, A '16, '17.

Chebyshev Polynomials

Simon '17: Does the closed domain K bounded by the Koch snowflake obey a Totik-Widom bound, i.e.,

$$
w_{n}(K)=O(1) \quad \text { as } n \rightarrow \infty ?
$$

Theorem (A \& Nazarov '18) Let K be a quasidisk. Then

$$
\widetilde{w}_{n}(K)=O(1) \quad \text { as } n \rightarrow \infty .
$$

Widom '69, Totik '12 - '15, Totik \& Varga '14, A '16, '17.

Chebyshev Polynomials

Simon '17: Does the closed domain K bounded by the Koch snowflake obey a Totik-Widom bound, i.e.,

$$
w_{n}(K)=O(1) \quad \text { as } n \rightarrow \infty ?
$$

Theorem (A \& Nazarov '18) Let K be a quasidisk. Then

$$
\widetilde{w}_{n}(K)=O(1) \quad \text { as } n \rightarrow \infty .
$$

Widom '69, Totik '12 - '15, Totik \& Varga '14, A '16, '17.

Chebyshev Polynomials

Let now K consist of an infinite number of components.
Carleson '83: a compact set $K \subset \mathbb{R}$ is called homogeneous if there is $\eta>0$ such that for all $x \in K$,

$$
|K \cap(x-\delta, x+\delta)| \geq \eta \delta, \quad 0<\delta<\operatorname{diam} K .
$$

Christiansen \& Simon \& Zinchenko '15: A homogeneous set $K \subset \mathbb{R}$ obeys the Totik-Widom bound.

Goncharov \& Hatinoglu '14: $\left\{t_{n}(K)\right\}$ can increase faster than any sequence $\left\{t_{n}\right\}$ satisfying $t_{n} \geq 1$ and $\lim _{n \rightarrow \infty}\left(\log t_{n}\right) / n=0$.

Beardon \& Pommerenke '78: K is called uniformly perfect if there exists $0<\gamma<1$ such that for $z \in K$,

Chebyshev Polynomials

Let now K consist of an infinite number of components.
Carleson '83: a compact set $K \subset \mathbb{R}$ is called homogeneous if there is $\eta>0$ such that for all $x \in K$,

$$
|K \cap(x-\delta, x+\delta)| \geq \eta \delta, \quad 0<\delta<\operatorname{diam} K
$$

Christiansen \& Simon \& Zinchenko '15: A homogeneous set $K \subset \mathbb{R}$ obeys the Totik-Widom bound.

Goncharov \& Hatinoglu '14: $\left\{t_{n}(K)\right\}$ can increase faster than any sequence $\left\{t_{n}\right\}$ satisfying $t_{n} \geq 1$ and $\lim _{n \rightarrow \infty}\left(\log t_{n}\right) / n=0$.

Beardon \& Pommerenke '78: K is called uniformly perfect if there exists $0<\gamma<1$ such that for $z \in K$,

Chebyshev Polynomials

Let now K consist of an infinite number of components.
Carleson '83: a compact set $K \subset \mathbb{R}$ is called homogeneous if there is $\eta>0$ such that for all $x \in K$,

$$
|K \cap(x-\delta, x+\delta)| \geq \eta \delta, \quad 0<\delta<\operatorname{diam} K
$$

Christiansen \& Simon \& Zinchenko '15: A homogeneous set $K \subset \mathbb{R}$ obeys the Totik-Widom bound.

Goncharov \& Hatinoglu '14: $\left\{t_{n}(K)\right\}$ can increase faster than any sequence $\left\{t_{n}\right\}$ satisfying $t_{n} \geq 1$ and $\lim _{n \rightarrow \infty}\left(\log t_{n}\right) / n=0$.

Beardon \& Pommerenke '78: K is called uniformly perfect if there exists $0<\gamma<1$ such that for $z \in K$,

Chebyshev Polynomials

Let now K consist of an infinite number of components.
Carleson '83: a compact set $K \subset \mathbb{R}$ is called homogeneous if there is $\eta>0$ such that for all $x \in K$,

$$
|K \cap(x-\delta, x+\delta)| \geq \eta \delta, \quad 0<\delta<\operatorname{diam} K
$$

Christiansen \& Simon \& Zinchenko '15: A homogeneous set $K \subset \mathbb{R}$ obeys the Totik-Widom bound.

Goncharov \& Hatinoglu '14: $\left\{t_{n}(K)\right\}$ can increase faster than any sequence $\left\{t_{n}\right\}$ satisfying $t_{n} \geq 1$ and $\lim _{n \rightarrow \infty}\left(\log t_{n}\right) / n=0$.
Beardon \& Pommerenke '78: K is called uniformly perfect if there exists 0
$K \cap\{\zeta: \operatorname{\gamma r} \leq|z-\zeta| \leq r\} \neq \emptyset, \quad 0<r<\operatorname{diam} K$.

Chebyshev Polynomials

Let now K consist of an infinite number of components.
Carleson '83: a compact set $K \subset \mathbb{R}$ is called homogeneous if there is $\eta>0$ such that for all $x \in K$,

$$
|K \cap(x-\delta, x+\delta)| \geq \eta \delta, \quad 0<\delta<\operatorname{diam} K
$$

Christiansen \& Simon \& Zinchenko '15: A homogeneous set $K \subset \mathbb{R}$ obeys the Totik-Widom bound.

Goncharov \& Hatinoglu '14: $\left\{t_{n}(K)\right\}$ can increase faster than any sequence $\left\{t_{n}\right\}$ satisfying $t_{n} \geq 1$ and $\lim _{n \rightarrow \infty}\left(\log t_{n}\right) / n=0$.
Beardon \& Pommerenke '78: K is called uniformly perfect if there exists $0<\gamma<1$ such that for $z \in K$,

$$
K \cap\{\zeta: \gamma r \leq|z-\zeta| \leq r\} \neq \emptyset, \quad 0<r<\operatorname{diam} K
$$

Chebyshev Polynomials

Pommerenke '79: K is uniformly perfect iff there exists $0<\lambda<1$ such that for $z \in K$,

$$
\operatorname{cap}(K \cap\{\zeta:|\zeta-z| \leq r\}) \geq \lambda r, \quad 0<r<\operatorname{diam} K
$$

The classical Cantor set is the uniformly perfect set.
Theorem (A '17) For a uniformly perfect set $K \subset \mathbb{R}$ there exists $c=c(K)>0$ such that

There is a principal difference between the above mentioned classes of compact sets, i.e., K is the Parreau-Widom set in the case of the homogeneous $K \subset \mathbb{R}$ and it is not, in general, the Parreau-Widom set in the case of the uniformly perfect K.

Chebyshev Polynomials

Pommerenke '79: K is uniformly perfect iff there exists $0<\lambda<1$ such that for $z \in K$,

$$
\operatorname{cap}(K \cap\{\zeta:|\zeta-z| \leq r\}) \geq \lambda r, \quad 0<r<\operatorname{diam} K
$$

The classical Cantor set is the uniformly perfect set.
Theorem (A '17) For a uniformly perfect set $K \subset \mathbb{R}$ there exists $c=c(K)>0$ such that

There is a principal difference between the above mentioned classes of compact sets, i.e., K is the Parreau-Widom set in the case of the homogeneous $K \subset \mathbb{R}$ and it is not, in general, the Parreau-Widom set in the case of the uniformly perfect K.

Chebyshev Polynomials

Pommerenke '79: K is uniformly perfect iff there exists $0<\lambda<1$ such that for $z \in K$,

$$
\operatorname{cap}(K \cap\{\zeta:|\zeta-z| \leq r\}) \geq \lambda r, \quad 0<r<\operatorname{diam} K
$$

The classical Cantor set is the uniformly perfect set.
Theorem (A '17) For a uniformly perfect set $K \subset \mathbb{R}$ there exists $c=c(K)>0$ such that

$$
w_{n}(K)=O\left(n^{c}\right) \quad \text { as } n \rightarrow \infty .
$$

There is a principal difference between the above mentioned classes of compact sets, i.e., K is the Parreau-Widom set in the case of the homogeneous $K \subset \mathbb{R}$ and it is not, in general, the Parreau-Widom set in the case of the uniformly perfect K.

Chebyshev Polynomials

Pommerenke '79: K is uniformly perfect iff there exists $0<\lambda<1$ such that for $z \in K$,

$$
\operatorname{cap}(K \cap\{\zeta:|\zeta-z| \leq r\}) \geq \lambda r, \quad 0<r<\operatorname{diam} K .
$$

The classical Cantor set is the uniformly perfect set.
Theorem (A '17) For a uniformly perfect set $K \subset \mathbb{R}$ there exists $c=c(K)>0$ such that

$$
w_{n}(K)=O\left(n^{c}\right) \quad \text { as } n \rightarrow \infty
$$

There is a principal difference between the above mentioned classes of compact sets, i.e., K is the Parreau-Widom set in the case of the homogeneous $K \subset \mathbb{R}$ and it is not, in general, the Parreau-Widom set in the case of the uniformly perfect K.

Chebyshev Polynomials

H. Lebesgue: "I assume that I am not the only one who does not understand the interest in and significance of these strange problems on maxima and minima studied by Chebyshev in memoirs whose titles often begin with "On functions deviating least from zero...". Could it be that one must have a Slavic soul to understand the great Russian Scholar?"

Harmonic majorants in classes of subharmonic functions

Let E_{σ} be the class of entire functions of exponential type at most $\sigma>0$.

Bernstein '23: For $f \in E_{\sigma}$,
Extensions (Akhiezer '46, Levin '50, 71, '89, Schaeffer '53, Akhiezer \& Levin '60, Levin \& Logvinenko \& Sodin '92): If $E \subset \mathbb{R}$ conforms to certain metric properties then for $f \in E_{\sigma}$,

$$
|f(z)| \leq\left(H_{E}(z)\right)^{\sigma}\|f\|_{E},
$$

where $H_{E}(z)$ is a "universal function" which does not depend on f.

Harmonic majorants in classes of subharmonic functions

Let E_{σ} be the class of entire functions of exponential type at most $\sigma>0$.

Bernstein '23: For $f \in E_{\sigma}$,

$$
\left\|f^{\prime}\right\|_{\mathbb{R}} \leq \sigma\|f\|_{\mathbb{R}} .
$$

Extensions (Akhiezer '46, Levin '50, '71, '89, Schaeffer '53, Akhiezer \& Levin '60, Levin \& Logvinenko \& Sodin '92) If $E \subset \mathbb{R}$ conforms to certain metric properties then for
$f \in E_{\sigma}$,

$$
|f(z)| \leq\left(H_{E}(z)\right)^{\sigma}\|f\|_{E},
$$

where $H_{E}(z)$ is a "universal function" which does not depend on f.

Harmonic majorants in classes of subharmonic functions

Let E_{σ} be the class of entire functions of exponential type at most $\sigma>0$.

Bernstein '23: For $f \in E_{\sigma}$,

$$
\left\|f^{\prime}\right\|_{\mathbb{R}} \leq \sigma\|f\|_{\mathbb{R}} .
$$

Extensions (Akhiezer '46, Levin '50, '71, '89, Schaeffer '53, Akhiezer \& Levin '60, Levin \& Logvinenko \& Sodin '92): If $E \subset \mathbb{R}$ conforms to certain metric properties then for $f \in E_{\sigma}$,

$$
|f(z)| \leq\left(H_{E}(z)\right)^{\sigma}\|f\|_{E}, \quad z \in \mathbb{C},
$$

where $H_{E}(z)$ is a "universal function" which does not depend on f.

Harmonic majorants

We say that a subharmonic function u in \mathbb{C} has degree $\sigma>0$ if

$$
\limsup _{|z| \rightarrow \infty} \frac{u(z)}{|z|}=\sigma .
$$

Denote by $K_{\sigma}(E)$ the class of subharmonic in \mathbb{C} functions of degree at most σ and non-positive on E.
Lei

be the subharmonic majorant of the class $K_{\sigma}(E)$. It is known that $v(z)$ is either finite everywhere on \mathbb{C} or equal to $+\infty$ on $\mathbb{C} \backslash E$. The set E is said to be of type (α) in the former case, and of type (β) in the latter.

Harmonic majorants

We say that a subharmonic function u in \mathbb{C} has degree $\sigma>0$ if

$$
\limsup _{|z| \rightarrow \infty} \frac{u(z)}{|z|}=\sigma .
$$

Denote by $K_{\sigma}(E)$ the class of subharmonic in \mathbb{C} functions of degree at most σ and non-positive on E.
Let

$$
v(z)=v\left(z, K_{\sigma}(E)\right):=\sup \left\{u(z): u \in K_{\sigma}(E)\right\}, \quad z \in \mathbb{C}
$$

be the subharmonic majorant of the class $K_{\sigma}(E)$. It is known that $v(z)$ is either finite everywhere on \mathbb{C} or equal to $+\infty$ on $\mathbb{C} \backslash E$. The set E is said to be of type (α) in the former case, and of type (β) in the latter.

Harmonic majorants

Theorem (A '08) The case (α) holds iff there exist points $a_{j}, b_{j} \in E,-\infty<j<\infty$ such that

$$
\begin{gathered}
b_{j-1} \leq a_{j}<b_{j} \leq a_{j+1}, \quad \lim _{j \rightarrow \pm \infty} a_{j}= \pm \infty, \\
\bigcup_{j=-\infty}^{\infty}\left(a_{j}, b_{j}\right) \supset E^{*}:=\mathbb{R} \backslash E, \\
\inf _{-\infty<j<\infty} \frac{\operatorname{cap}\left(E \cap\left[a_{j}, b_{j}\right]\right)}{\operatorname{cap}\left(\left[a_{j}, b_{j}\right]\right)}>0, \\
\sum_{j=-\infty}^{\infty}\left(\frac{b_{j}-a_{j}}{\left|a_{j}\right|+1}\right)^{2}<\infty .
\end{gathered}
$$

see also Carleson \& Totik '04, Carroll \& Gardiner '08.

Harmonic majorants

Theorem (A '08) The case (α) holds iff there exist points $a_{j}, b_{j} \in E,-\infty<j<\infty$ such that

$$
\begin{gathered}
b_{j-1} \leq a_{j}<b_{j} \leq a_{j+1}, \quad \lim _{j \rightarrow \pm \infty} a_{j}= \pm \infty, \\
\bigcup_{j=-\infty}^{\infty}\left(a_{j}, b_{j}\right) \supset E^{*}:=\mathbb{R} \backslash E, \\
\inf _{-\infty<j<\infty} \frac{\operatorname{cap}\left(E \cap\left[a_{j}, b_{j}\right]\right)}{\operatorname{cap}\left(\left[a_{j}, b_{j}\right]\right)}>0, \\
\sum_{j=-\infty}^{\infty}\left(\frac{b_{j}-a_{j}}{\left|a_{j}\right|+1}\right)^{2}<\infty .
\end{gathered}
$$

see also Carleson \& Totik '04, Carroll \& Gardiner '08.

Harmonic majorants

Corollary (Schaeffer '53, Benidicks '80, Segawa '88, '90, Levin '89, Gardiner '90). Since

$$
\operatorname{cap}\left(\left[a_{j}, b_{j}\right]\right)=\frac{b_{j}-a_{j}}{4} \quad \text { and } \quad \operatorname{cap}\left(E \cap\left[a_{j}, b_{j}\right]\right) \geq \frac{\left|E \cap\left[a_{j}, b_{j}\right]\right|}{4}
$$

the existence of points $a_{j}, b_{j} \in E,-\infty<j<\infty$ such that

$$
\begin{gathered}
b_{j-1} \leq a_{j}<b_{j} \leq a_{j+1}, \quad \lim _{j \rightarrow \pm \infty} a_{j}= \pm \infty \\
\bigcup_{j=-\infty}^{\infty}\left(a_{j}, b_{j}\right) \supset E^{*} \\
\inf _{-\infty<j<\infty} \frac{\left|E \cap\left[a_{j}, b_{j}\right]\right|}{b_{j}-a_{j}}>0 \\
\sum_{j=-\infty}^{\infty}\left(\frac{b_{j}-a_{j}}{\left|a_{j}\right|+1}\right)^{2}<\infty
\end{gathered}
$$

is sufficient for the case (α).

Bernstein-type approximation theorem

For a closed unbounded set $E \subset \mathbb{C}$, denote by $B C(E)$ the class of (complex-valued) functions which are bounded and continuous on E. Let E_{σ} be the class of entire functions of exponential type at most $\sigma>0$ and let

$$
A_{\sigma}(f, E):=\inf _{g \in E_{\sigma}}\|f-g\|_{E}, \quad f \in B C(E) .
$$

Bernstein '46: for $f \in B C(\mathbb{R})$ and $0<\alpha<1$,

where

Bernstein-type approximation theorem

For a closed unbounded set $E \subset \mathbb{C}$, denote by $B C(E)$ the class of (complex-valued) functions which are bounded and continuous on E. Let E_{σ} be the class of entire functions of exponential type at most $\sigma>0$ and let

$$
A_{\sigma}(f, E):=\inf _{g \in E_{\sigma}}\|f-g\|_{E}, \quad f \in B C(E) .
$$

Bernstein '46: for $f \in B C(\mathbb{R})$ and $0<\alpha<1$,

$$
A_{\sigma}(f, \mathbb{R})=O\left(\sigma^{-\alpha}\right) \quad \text { as } \sigma \rightarrow \infty
$$

iff

$$
\omega_{f, \mathbb{R}}(\delta)=O\left(\delta^{\alpha}\right) \quad \text { as } \delta \rightarrow+0,
$$

where

$$
\omega_{f, \mathbb{R}}(\delta):=\sup _{\substack{x_{1}, x_{2} \in \mathbb{R} \\\left|x_{1}-x_{2}\right| \leq \delta}}\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|, \quad \delta>0 .
$$

Bernstein-type approximation theorem

Consider the following two problems:
(a) find the structure properties of $f \in B C(E)$ satisfying

$$
A_{\sigma}(f, E)=O\left(\sigma^{-\alpha}\right) \quad \text { as } \sigma \rightarrow \infty
$$

(we focus on this interpretation of the Bernstein result);
(b) describe the rate of approximation of $f \in B C(E)$ satisfying

$$
\omega_{f, E}(\delta)=O\left(\delta^{\alpha}\right) \quad \text { as } \delta \rightarrow+0,
$$

(Brudnyi '60, Shirokov '03, '04, Shirokov \& Silvanovich '06, '08, '16, '17).

The set $E^{*}:=\mathbb{R} \backslash E$ consists of a finite or infinite number of disjoint
open intervals $J_{j}=\left(a_{j}, b_{j}\right)$. We assume that if the number of J_{j} s is infinite then E possesses the following two properties:

Bernstein-type approximation theorem

Consider the following two problems:
(a) find the structure properties of $f \in B C(E)$ satisfying

$$
A_{\sigma}(f, E)=O\left(\sigma^{-\alpha}\right) \quad \text { as } \sigma \rightarrow \infty
$$

(we focus on this interpretation of the Bernstein result);
(b) describe the rate of approximation of $f \in B C(E)$ satisfying

$$
\omega_{f, E}(\delta)=O\left(\delta^{\alpha}\right) \quad \text { as } \delta \rightarrow+0,
$$

(Brudnyi '60, Shirokov '03, '04, Shirokov \& Silvanovich '06, '08, '16, '17).
The set $E^{*}:=\mathbb{R} \backslash E$ consists of a finite or infinite number of disjoint open intervals $J_{j}=\left(a_{j}, b_{j}\right)$. We assume that if the number of $J_{j} s$ is infinite then E possesses the following two properties:

$$
\left|J_{j}\right| \leq C_{1}, \quad \sum_{k \neq j}\left(\frac{\left|J_{k}\right|}{\operatorname{dist}\left(J_{k}, J_{j}\right)}\right)^{2} \leq C_{2}
$$

Bernstein-type approximation theorem

Example. Let $E=\bigcup_{l=-\infty}^{\infty}\left[c_{l}, d_{l}\right]$, where

$$
d_{l-1}<c_{l}<d_{l}<c_{l+1}, \quad l=0, \pm 1, \pm 2, \ldots
$$

are such that

$$
d_{l}-c_{l} \geq C_{3}, \quad c_{l+1}-d_{l} \leq C_{4}
$$

In the case of polynomial approximation of continuous functions on a finite interval $[a, b] \subset \mathbb{R}$, the special role of the endpoints a and b is well-known.
Ditzian \& Totik '87: a new modulus of continuity by using the distance between the points on $[a, b]$ that is not Euclidean.

In the case of entire function approximation on E the endpoints of J_{j} also play a special role.

Bernstein-type approximation theorem

Example. Let $E=\bigcup_{l=-\infty}^{\infty}\left[c_{l}, d_{l}\right]$, where

$$
d_{l-1}<c_{l}<d_{l}<c_{l+1}, \quad l=0, \pm 1, \pm 2, \ldots
$$

are such that

$$
d_{l}-c_{l} \geq C_{3}, \quad c_{l+1}-d_{l} \leq C_{4}
$$

In the case of polynomial approximation of continuous functions on a finite interval $[a, b] \subset \mathbb{R}$, the special role of the endpoints a and b is well-known.
Ditzian \& Totik '87: a new modulus of continuity by using the distance between the points on $[a, b]$ that is not Euclidean.

In the case of entire function approximation on E the endpoints of J_{j} also play a special role.

Bernstein-type approximation theorem

Example. Let $E=\bigcup_{l=-\infty}^{\infty}\left[c_{l}, d_{l}\right]$, where

$$
d_{l-1}<c_{l}<d_{l}<c_{l+1}, \quad l=0, \pm 1, \pm 2, \ldots
$$

are such that

$$
d_{l}-c_{l} \geq C_{3}, \quad c_{l+1}-d_{l} \leq C_{4}
$$

In the case of polynomial approximation of continuous functions on a finite interval $[a, b] \subset \mathbb{R}$, the special role of the endpoints a and b is well-known.
Ditzian \& Totik '87: a new modulus of continuity by using the distance between the points on $[a, b]$ that is not Euclidean.

In the case of entire function approximation on E the endpoints of J_{j} also play a special role.

Bernstein-type approximation theorem

Let $\mathbb{H}:=\{z: \Im z>0\}$.
Levin '89: there exist vertical intervals
$J_{j}^{\prime}=\left(u_{j}, u_{j}+i v_{j}\right], u_{j} \in \mathbb{R}, v_{j}>0$ and a conformal mapping

$$
\phi: \mathbb{H} \rightarrow \mathbb{H}_{E}:=\mathbb{H} \backslash\left(\cup_{j} J_{j}^{\prime}\right)
$$

normalized by $\phi(\infty)=\infty, \phi(i)=i$ such that ϕ can be extended continuously to $\overline{\mathbb{H}}$ and it satisfies the boundary correspondence $\phi\left(J_{j}\right)=J_{j}^{\prime}$.
For $x_{1}, x_{2} \in E$ such that $x_{1}<x_{2}$ set

In spite of its definition via the conformal mapping, the behavior of τ_{E} can be characterized in purely geometrical terms. In particular,

Bernstein-type approximation theorem

Let $\mathbb{H}:=\{z: \Im z>0\}$.
Levin '89: there exist vertical intervals
$J_{j}^{\prime}=\left(u_{j}, u_{j}+i v_{j}\right], u_{j} \in \mathbb{R}, v_{j}>0$ and a conformal mapping

$$
\phi: \mathbb{H} \rightarrow \mathbb{H}_{E}:=\mathbb{H} \backslash\left(\cup_{j} \cup_{j}^{\prime}\right)
$$

normalized by $\phi(\infty)=\infty, \phi(i)=i$ such that ϕ can be extended continuously to $\overline{\mathbb{H}}$ and it satisfies the boundary correspondence $\phi\left(J_{j}\right)=J_{j}^{\prime}$.
For $x_{1}, x_{2} \in E$ such that $x_{1}<x_{2}$ set

$$
\tau_{E}\left(x_{1}, x_{2}\right)=\tau_{E}\left(x_{2}, x_{1}\right):=\operatorname{diam} \phi\left(\left[x_{1}, x_{2}\right]\right) .
$$

In spite of its definition via the conformal mapping, the behavior of τ_{E} can be characterized in purely geometrical terms. In particular,

Bernstein-type approximation theorem

Let $\mathbb{H}:=\{z: \Im z>0\}$.
Levin '89: there exist vertical intervals
$J_{j}^{\prime}=\left(u_{j}, u_{j}+i v_{j}\right], u_{j} \in \mathbb{R}, v_{j}>0$ and a conformal mapping

$$
\phi: \mathbb{H} \rightarrow \mathbb{H}_{E}:=\mathbb{H} \backslash\left(\cup_{j} \cup_{j}^{\prime}\right)
$$

normalized by $\phi(\infty)=\infty, \phi(i)=i$ such that ϕ can be extended continuously to $\overline{\mathbb{H}}$ and it satisfies the boundary correspondence $\phi\left(J_{j}\right)=J_{j}^{\prime}$.
For $x_{1}, x_{2} \in E$ such that $x_{1}<x_{2}$ set

$$
\tau_{E}\left(x_{1}, x_{2}\right)=\tau_{E}\left(x_{2}, x_{1}\right):=\operatorname{diam} \phi\left(\left[x_{1}, x_{2}\right]\right) .
$$

In spite of its definition via the conformal mapping, the behavior of τ_{E} can be characterized in purely geometrical terms. In particular,

$$
\tau_{E}\left(x_{1}, x_{2}\right) \geq C_{5}\left|x_{2}-x_{1}\right|, \quad x_{1}, x_{2} \in E .
$$

Bernstein-type approximation theorem

Theorem (A '10) For $f \in B C(E)$ and $0<\alpha<1$,

$$
A_{\sigma}(f, E)=O\left(\sigma^{-\alpha}\right) \quad \text { as } \sigma \rightarrow \infty
$$

iff

$$
\omega_{f, E}^{*}(\delta)=O\left(\delta^{\alpha}\right) \quad \text { as } \delta \rightarrow+0,
$$

where

$$
\omega_{f, E}^{*}(\delta):=\sup _{\substack{x_{1}, x_{2} \in E \\ \tau \in\left(x_{1}, x_{2}\right) \leq \delta}}\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|, \quad \delta>0 .
$$

